深度学习之FPN+PAN

这篇具有很好参考价值的文章主要介绍了深度学习之FPN+PAN。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、FPN

检测不同尺度的物体具有挑战性,尤其是对于小物体,我们可以使用不同尺度的同一图像的金字塔来检测物体(下左图)但是,处理多尺度图像非常耗时并且内存需求太高而无法同时进行端到端训练,因此创建了一个特征金字塔并将它们用于对象检测(右图)。

深度学习之FPN+PAN
特征金字塔网络 (FPN) 是一种特征提取器,专为此类金字塔概念而设计,兼顾准确性和速度,FPN结构图如下所示。深度学习之FPN+PAN

二、PAN

FPN是自上向下的一个特征金字塔,把高层的强语义特征传递下来,对整个金字塔进行增强,不过它只增强了语义信息,却对定位信息没有传递(或者说是因为向上传递路径太长,传递效果不好)。PAN就是针对这一点,在FPN的后面添加一个自下向上的金字塔,对FPN进行补充,将低层的定位特征传递上去,这样形成的金字塔既结合了语义信息又拥有定位信息,“双杀”。
语义信息可以通俗的理解成是图像的纹理,颜色,或者目标的类别等信息,例如在检测网络中,一个图像输入到网络中,经过一层层的卷积之后,语义信息会越来越明显,但是相对的位置信息会越来越弱,因为越到高层卷积的时候,feature map映射到原图中的感受野越大,这样对局部的位置信息感受就比较差。
深度学习之FPN+PAN文章来源地址https://www.toymoban.com/news/detail-511573.html

到了这里,关于深度学习之FPN+PAN的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 多尺度目标检测【动手学深度学习】

            在上篇博客《锚框【目标检测】》中,我们以输入图像的每个像素为中心,生成多个锚框。基本而言,这些锚框代表了图像不同区域的样本。然而如果以每个像素都生成的锚框,最后可能会得到太多需要计算的锚框。想象一个561×728的输入图像,如果以每个像素为

    2024年02月13日
    浏览(35)
  • 《异常检测——从经典算法到深度学习》21 Anomaly Transformer:具有关联差异的时间序列异常检测

    0 概论 1 基于隔离森林的异常检测算法 2 基于LOF的异常检测算法 3 基于One-Class SVM的异常检测算法 4 基于高斯概率密度异常检测算法 5 Opprentice——异常检测经典算法最终篇 6 基于重构概率的 VAE 异常检测 7 基于条件VAE异常检测 8 Donut: 基于 VAE 的 Web 应用周期性 KPI 无监督异常检测

    2024年02月11日
    浏览(46)
  • OpenCV实例(九)基于深度学习的运动目标检测(三)YOLOv3识别物体

    目标检测,粗略地说就是输入图片/视频,经过处理后得到目标的位置信息(比如左上角和右下角的坐标)、目标的预测类别、目标的预测置信度。前面我们阐述了不少理论知识,现在需要动手实战了。对于初学者来说,自己实现YOLO算法不太现实,幸运的是OpenCV的DNN(Deep Neur

    2024年02月12日
    浏览(57)
  • 深度学习之基于yolov8的安全帽检测系统

    欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。    在企业作业和工地施工过程中,安全永远高于一切。众所周知,工人在进入工作现场必须佩戴安全帽,传统的检查方法主要靠安全检查人员人工查看,这种方法既耗时又费力却无法保证效果

    2024年02月08日
    浏览(48)
  • 深度学习之基于YoloV8的行人跌倒目标检测系统

    欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。    世界老龄化趋势日益严重,现代化的生活习惯又使得大多数老人独居,统计数据表明,跌倒是老年人的主要致伤原因。利用先进的计算机技术、传感器技术和图像信息处理技术实现人体跌倒

    2024年02月08日
    浏览(60)
  • 目标检测 - FPN结构

    论文:Feature Pyramid Networks for Object Detection 网址:https://arxiv.org/abs/1612.03144 图a为特征图像金字塔,针对我们要检测不同尺度的目标时,我们会将图片缩放到不同的尺度,针对每个尺度的图片都经过我们的模型进行预测。面临问题:生成n个不同的尺度,就要重新预测n次,这样效

    2024年01月23日
    浏览(26)
  • 【pan-sharpening 攻击:目标检测】

    (对抗性泛锐化攻击在遥感目标检测中的应用) 全色锐化是遥感系统中最常用的技术之一,其目的是将纹理丰富的PAN图像和多光谱MS图像融合,以获得纹理丰富的MS图像。随着深度学习的发展,基于CNN的泛锐化方法近年来受到越来越多的关注。由于全色锐化技术可以融合Pan和

    2023年04月14日
    浏览(20)
  • 基于YOLOv8深度学习的无人机视角地面物体检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测

    《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌ 更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍 感谢小伙伴们点赞、关注! 《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】

    2024年03月21日
    浏览(72)
  • 深度学习中的FPN详解

    深度学习入门小菜鸟,希望像做笔记记录自己学的东西,也希望能帮助到同样入门的人,更希望大佬们帮忙纠错啦~侵权立删。   目录 一、FPN提出原因 二、FPN的参考思想 三、特征金字塔  四、FPN具体思路 卷积网络中,深层网络容易响应语义特征,浅层网络容易响应图像特征

    2024年02月02日
    浏览(36)
  • 深度学习之基于Yolov5闯红灯及红绿灯检测系统

    欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。    基于Yolov5的闯红灯及红绿灯检测系统是一种使用计算机视觉和深度学习技术实现的交通监控系统。它能够检测交通信号灯的状态(红灯、黄灯、绿灯),并识别车辆是否违反交通信号(闯红

    2024年02月06日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包