大模型基础之注意力机制和Transformer

这篇具有很好参考价值的文章主要介绍了大模型基础之注意力机制和Transformer。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【注意力机制】

核心思想:在decoder的每一步,把encoder端所有的向量提供给decoder,这样decoder根据当前自身状态,来自动选择需要使用的向量和信息.

【注意力带来的可解释性】

decoder在每次生成时可以关注到encoder端所有位置的信息。

通过注意力地图可以发现decoder所关注的点。

注意力使网络可以对齐语义相关的词汇。

【注意力机制的优势】

RNNs顺序计算阻碍了并行化

论文:Attention is all you need

【Transformer的结构】

概览encoder-decoder结构

大模型基础之注意力机制和Transformer

把句子/单词序列切分成一个个的单元,每个单元叫做token,通过embedding幻化为一个向量。

输入层:token的byte pair encoding+token的位置向量(表示它在文本中的位置)

中间模型结构:一些编码和解码块的堆叠。

输出: 一个在词表上的概率分布

损失函数:交叉熵

【输入层:BPE + PE】

BPE byte pair encoding一种分词算法

解决了OOV(out of vocabulary)问题,把罕见字词和未知词编码为字词,例如用一些词根组合来表示。(常用于英文)

PE:位置编码

文章来源地址https://www.toymoban.com/news/detail-512734.html

到了这里,关于大模型基础之注意力机制和Transformer的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 简单理解Transformer注意力机制

    这篇文章是对《动手深度学习》注意力机制部分的简单理解。 生物学中的注意力 生物学上的注意力有两种,一种是无意识的,零一种是有意识的。如下图1,由于红色的杯子比较突出,因此注意力不由自主指向了它。如下图2,由于有意识的线索是想要读书,即使红色杯子比较

    2024年02月03日
    浏览(38)
  • Transformer中的注意力机制及代码

    最近在学习transformer,首先学习了多头注意力机制,这里积累一下自己最近的学习内容。本文有大量参考内容,包括但不限于: ① 注意力,多注意力,自注意力及Pytorch实现 ② Attention 机制超详细讲解(附代码) ③ Transformer 鲁老师机器学习笔记 ④ transformer中: self-attention部分是否需

    2023年04月11日
    浏览(45)
  • 图解transformer中的自注意力机制

    本文将将介绍注意力的概念从何而来,它是如何工作的以及它的简单的实现。 在整个注意力过程中,模型会学习了三个权重:查询、键和值。查询、键和值的思想来源于信息检索系统。所以我们先理解数据库查询的思想。 假设有一个数据库,里面有所有一些作家和他们的书籍

    2024年02月09日
    浏览(51)
  • 【】理解ChatGPT之注意力机制和Transformer入门

    作者:黑夜路人 时间:2023年4月27日 想要连贯学习本内容请阅读之前文章: 【原创】理解ChatGPT之GPT工作原理 【原创】理解ChatGPT之机器学习入门 【原创】AIGC之 ChatGPT 高级使用技巧 GPT是什么意思 GPT 的全称是 Generative Pre-trained Transformer(生成型预训练变换模型),它是基于大

    2024年02月16日
    浏览(48)
  • 注意力机制——Spatial Transformer Networks(STN)

    Spatial Transformer Networks(STN)是一种空间注意力模型,可以通过学习对输入数据进行空间变换,从而增强网络的对图像变形、旋转等几何变换的鲁棒性。STN 可以在端到端的训练过程中自适应地学习变换参数,无需人为设置变换方式和参数。 STN 的基本结构包括三个部分:定位网

    2024年02月07日
    浏览(46)
  • 【计算机视觉 | 注意力机制】13种即插即用涨点模块分享!含注意力机制、卷积变体、Transformer变体等

    用即插即用的模块“缝合”,加入自己的想法快速搭积木炼丹。 这种方法可以简化模型设计,减少冗余工作,帮助我们快速搭建模型结构,不需要从零开始实现所有组件。除此以外,这些即插即用的模块都具有标准接口,意味着我们可以很方便地替换不同的模块进行比较,加

    2024年02月04日
    浏览(48)
  • 【Transformer】自注意力机制Self-Attention

    \\\"Transformer\\\"是一种深度学习模型,首次在\\\"Attention is All You Need\\\"这篇论文中被提出,已经成为自然语言处理(NLP)领域的重要基石。这是因为Transformer模型有几个显著的优点: 自注意力机制(Self-Attention) :这是Transformer最核心的概念,也是其最大的特点。 通过自注意力机制,模

    2024年02月13日
    浏览(38)
  • 解码Transformer:自注意力机制与编解码器机制详述与代码实现

    本文全面探讨了Transformer及其衍生模型,深入分析了自注意力机制、编码器和解码器结构,并列举了其编码实现加深理解,最后列出基于Transformer的各类模型如BERT、GPT等。文章旨在深入解释Transformer的工作原理,并展示其在人工智能领域的广泛影响。 作者 TechLead,拥有10+年互

    2024年02月13日
    浏览(46)
  • 图解Vit 2:Vision Transformer——视觉问题中的注意力机制

    上节回顾 在Transformer之前的RNN,其实已经用到了注意力机制。Seq2Seq。 对于Original RNN,每个RNN的输入,都是对应一个输出。对于original RNN,他的输入和输出必须是一样的。 在处理不是一对一的问题时,提出了RNN Seq2Seq。也就是在前面先输入整体,然后再依次把对应的输出出来

    2024年02月17日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包