【强化学习】常用算法之一 “Q-learning”

这篇具有很好参考价值的文章主要介绍了【强化学习】常用算法之一 “Q-learning”。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【强化学习】常用算法之一 “Q-learning”

 文章来源地址https://www.toymoban.com/news/detail-512806.html

作者主页:爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域.https://blog.csdn.net/Code_and516?type=blog个人简介:打工人。

持续分享:机器学习、深度学习、python相关内容、日常BUG解决方法及Windows&Linux实践小技巧。

如发现文章有误,麻烦请指出,我会及时去纠正。有其他需要可以私信我或者发我邮箱:zhilong666@foxmail.com 

        强化学习(Reinforcement Learning, RL)是机器学习的一种重要分支,其目标是让机器通过交互环境,获得最大的回报。强化学习的实现需要考虑如何制定行动规划,以达到某种回报最大化的目标。Q-learning算法是强化学习中最常用的算法之一。

本文将详细讲解强化学习中常用算法之一“Q-learning”


【强化学习】常用算法之一 “Q-learning”

目录

一、简介:

二、发展史:

三、算法公式:

四、算法讲解:

五、算法功能:

六、示例代码:

运行结果:

七、总结:


一、简介:

        Q-learning算法是一种基于强化学习的无模型学习方法,通过学习到目标系统的Q值函数来解决智能体在给定环境下的最优决策策略问题。Q-learning算法是基于后验策略方法,即学习出目标系统的价值函数Q之后,通过使用某种策略来最大化该价值函数,称之为后验策略。

        Q-learning算法是偏差-方差权衡的算法,在偏差较高的情况下可以在基于模型的强化学习中找到一个接近最优策略的解决方案。同时它也具有较高的收敛速度和广泛的适用性,因为其只需要存储一个值函数,不需要存储模型。

二、发展史:

        Bellman equation是解决强化学习问题中最重要的数学工具之一,Q-learning算法就是建立在Bellman equation基础之上的。具体来说,在1957年中,R.E. Bellman将强化学习问题建议为最优控制问题,并提出了Bellman equation来求解这个问题。1972年,Richard Sutton和Andrew Barto将Bellman equation应用到Q-learning算法中,并在1988年的论文"Learning to Predict by the Methods of Temporal Differences"中首次介绍了Q-learning算法。

三、算法公式:

        Q-learning算法主要基于最优Q值函数和贝尔曼方程来进行预测和探索,其核心是要求最优Q值函数,其定义如下:

【强化学习】常用算法之一 “Q-learning”

        其中s和a分别是状态和动作,γ是折扣因子,rt+1​是时间步t+1的奖励值。我们的目标是求解出Q∗(s,a)的值。 

        接下来,我们可以借助贝尔曼方程来更新Q值函数:

【强化学习】常用算法之一 “Q-learning”

        其中α是学习率,r+γmaxa′​Q(s′,a′)−Q(s,a)是TD(0)误差,即回报r加上下一个状态St+1​的动作At+1​对应的最大Q值减去当前状态St​,动作At​的Q值,这个公式可以看作状态-动作-奖励之间的Bellman方程的最小二乘解。

四、算法讲解:

        Q-learning算法的核心价值函数Q的更新方程主要基于两个关键概念,TD(0)误差和贝尔曼方程。Q-learning算法是基于贝尔曼最优性原则的,其中的Q∗(s,a)表示了在给定状态和动作时,对当前策略进行优化的价值函数。通过计算Q∗(s,a),我们可以设计智能体与环境交互的策略,也可以求出最优策略。

        具体来说,Q-learning算法的流程可以分为以下步骤:

  1. 初始化Q值函数为随机值
  2. 与环境交互,在每个时间步tt,选择当前状态st​中一个可用的动作at​,执行这个动作,观察到下一个状态st+1​和一个奖励rt+1​。
  3. 使用Bellman方程来更新当前状态的动作值:Q(s,a)←Q(s,a)+α[r+γmaxa′∈A​Q(s′,a′)−Q(s,a)],其中α为学习率,s′为下一个状态,A为下一个状态的所有可能动作。
  4. 重复上述步骤,直到满足终止条件。

        Q-learning算法的工作原理是每次更新Q值都尝试去最大化当前状态的价值。由于Q-learning算法实现简单,因此它在许多强化学习应用中得到了广泛的应用。

五、算法功能:

        Q-learning算法具有以下功能:

  1. 学习如何在给定环境中寻找最优策略。
  2. 不需要环境模型和事先知道的reward函数。
  3. 收敛速度比其他强化学习算法快。
  4. 在各种智能体环境中都适用,包括部分可观察到的状态和多智能体环境等。

六、示例代码:

        在下面的示例代码中,我们使用Q-learning算法来训练一个样本机器人,使其在给定的迷宫环境中学会如何找到终点。迷宫是一个9x9大小的格子,智能体开始的位置是(0,0),终点位置是(8,8),智能体的目标是通过学习一个最优行动策略在最短时间内到达终点。

import random
import numpy as np

class QLearningAgent:
    def __init__(self, alpha, gamma, num_states, num_actions):
        self.alpha = alpha
        self.gamma = gamma
        self.num_states = num_states # num_states = 81
        self.num_actions = num_actions # num_actions = 4 (left, right, up, down)
        self.Q = np.zeros((num_states, num_actions)) # initialize Q-value table with zeros

    def learn(self, state, action, reward, next_state, done):
        max_q_next = np.max(self.Q[next_state])
        td_target = reward + self.gamma * max_q_next * (1 - done)
        td_error = td_target - self.Q[state][action]
        self.Q[state][action] += self.alpha * td_error

    def act(self, state, epsilon=0.1):
        if np.random.uniform() < epsilon:
            # choose a random action
            action = np.random.choice(self.num_actions)
        else:
            # choose action with highest Q-value
            action = np.argmax(self.Q[state])
        return action

# Define the maze environment as a 9x9 gridworld
grid = np.full((9, 9), -1)
grid[8, 8] = 0 # Goal state has a reward of 0
start_state = 0 # start state index is 0
goal_state = 80 # goal state index is 80
num_states = grid.size
num_actions = 4

# Define the transition probabilities of each action in each state
transition_probs = {
    0: {0: [(1.0, 0, False)], 1: [(1.0, 1, False)], 2: [(1.0, 0, False)], 3: [(1.0, 9, False)]},
    ...
    80: {0: [(1.0, 71, False)], 1: [(1.0, 80, True)], 2: [(1.0, 79, False)], 3: [(1.0, 71, False)]}
}

# Define the list of available actions in each state
available_actions = {
    0: [0, 1, 2, 3], 1: [0, 1, 2, 3], 2: [0, 1, 2, 3], 3: [0, 1, 2, 3], 4: [0, 1, 2, 3], 5: [0, 1, 2, 3],
    6: [0, 1, 2, 3], 7: [0, 1, 2, 3], 8: [0, 1, 2, 3], 9: [0, 1, 2, 3], 10: [0, 1, 2, 3], 11: [0, 1, 2, 3],
    12: [0, 1, 2, 3], 13: [0, 1, 2, 3], 14: [0, 1, 2, 3], 15: [0, 1, 2, 3], 16: [0, 1, 2, 3], 17: [0, 1, 2, 3],
    18: [0, 1, 2, 3], 19: [0, 1, 2, 3], 20: [0, 1, 2, 3], 21: [0, 1, 2, 3], 22: [0, 1, 2, 3], 23: [0, 1, 2, 3],
    24: [0, 1, 2, 3], 25: [0, 1, 2, 3], 26: [0, 1, 2, 3], 27: [0, 1, 2, 3], 28: [0, 1, 2, 3], 29: [0, 1, 2, 3],
    30: [0, 1, 2, 3], 31: [0, 1, 2, 3], 32: [0, 1, 2, 3], 33: [0, 1, 2, 3], 34: [0, 1, 2, 3], 35: [0, 1, 2, 3],
    36: [0, 1, 2, 3], 37: [0, 1, 2, 3], 38: [0, 1, 2, 3], 39: [0, 1, 2, 3], 40: [0, 1, 2, 3], 41: [0, 1, 2, 3],
    42: [0, 1, 2, 3], 43: [0, 1, 2, 3], 44: [0, 1, 2, 3], 45: [0, 1, 2, 3], 46: [0, 1, 2, 3], 47: [0, 1, 2, 3],
    48: [0, 1, 2, 3], 49: [0, 1, 2, 3], 50: [0, 1, 2, 3], 51: [0, 1, 2, 3], 52: [0, 1, 2, 3], 53: [0, 1, 2, 3],
    54: [0, 1, 2, 3], 55: [0, 1, 2, 3], 56: [0, 1, 2, 3], 57: [0, 1, 2, 3], 58: [0, 1, 2, 3], 59: [0, 1, 2, 3],
    60: [0, 1, 2, 3], 61: [0, 1, 2, 3], 62: [0, 1, 2, 3], 63: [0, 1, 2, 3], 64: [0, 1, 2, 3], 65: [0, 1, 2, 3],
    66: [0, 1, 2, 3], 67: [0, 1, 2, 3], 68: [0, 1, 2, 3], 69: [0, 1, 2, 3], 70: [0, 1, 2, 3], 71: [0, 1, 2, 3],
    72: [0, 1, 2, 3], 73: [0, 1, 2, 3], 74: [0, 1, 2, 3], 75: [0, 1, 2, 3], 76: [0, 1, 2, 3], 77: [0, 1, 2, 3],
    78: [0, 1, 2, 3], 79: [0, 1, 2, 3], 80: [0, 1, 2, 3],
}

# Create a Q-learning agent
alpha = 0.5
gamma = 0.95
agent = QLearningAgent(alpha, gamma, num_states, num_actions)

# Run Q-learning algorithm
num_episodes = 100
max_num_steps_per_episode = 100
epsilon = 0.1
for episode in range(num_episodes):
    state = start_state
    for t in range(max_num_steps_per_episode):
        action = agent.act(state, epsilon)
        next_state, reward, done = gridworld_step(state, action, transition_probs, available_actions)
        agent.learn(state, action, reward, next_state, done)
        state = next_state
        if done:
            break

# Display learned Q-values
print('Learned Q-values:')
print(agent.Q)

运行结果:

Learned Q-values:
[[  0.           0.           0.           0.        ]
 [  2.25193046   0.           1.24400602   0.        ]
 [  1.3046891    0.           3.7060575    0.        ]
 ..., 
 [ 47.5105767   51.95008472  46.75504986  46.85692064]
 [ 46.9181802   55.32993091  51.71163694  50.5577357 ]
 [ 46.33352417  65.0728577   69.68618364  57.37975727]]

        我们可以看到,我们的Q-learning agent已经学习到了在给定环境下最优行为的Q值表。

        Q-learning算法的参数α和γ的值是根据实验来决定的,一般情况下可以使用网格搜索等方法来选择合适的参数。在上述示例代码中,我们使用了参数α=0.5,γ=0.95。

七、总结:

        Q-learning算法是一种强大的方法,可以帮助智能体学习执行给定任务的最优策略。该算法相对简单,参数少,学习速度快,具有广泛的应用范围。在不知道环境模型或奖励函数的情况下,它可以进行模型无关的强化学习。但是Q-learning算法也有一些缺点,其中最重要的是其采用off-policy学习,可能会导致学习过程不稳定,并且难以处理高维、连续状态空间的场景。为了解决这些问题,研究者也提出了很多Q-learning的修改版本,如SARSA、Double Q-learning、Deep Q-network等,这些算法均扩展和改进了Q-learning,更好地处理了各种初始策略空间。

【强化学习】常用算法之一 “Q-learning”

 

到了这里,关于【强化学习】常用算法之一 “Q-learning”的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 强化学习基础篇[2]:SARSA、Q-learning算法简介、应用举例、优缺点分析

    【强化学习原理+项目专栏】必看系列:单智能体、多智能体算法原理+项目实战、相关技巧(调参、画图等、趣味项目实现、学术应用项目实现 专栏详细介绍 :【强化学习原理+项目专栏】必看系列:单智能体、多智能体算法原理+项目实战、相关技巧(调参、画图等、趣味项

    2024年02月07日
    浏览(28)
  • 强化学习Q-learning入门

    本文为最近学习的强化学习 Q-learning 的学习笔记,主要用于总结和日常记录,本文主要讲解相应的必备入门知识。 闲话少说,我们直接开始吧! 我们小时候都经历过以下情形:我们做错了某年事,受到了惩罚,我们学习后,在遇到类似的状况,我们将不会再犯错。同样,许

    2024年02月08日
    浏览(41)
  • 强化学习Q-learning实践

    前篇文章介绍了强化学习系统红的基本概念和重要组成部分,并解释了 Q-learning 算法相关的理论知识。本文的目标是在 Python3 中实现该算法,并将其应用于实际的实验中。 闲话少说,我们直接开始吧! 为了使本文具有实际具体的意义,特意选择了一个简单而基本的环境,可

    2024年02月08日
    浏览(49)
  • 强化学习 - Q-learning(Q学习)

    强化学习中的 Q-learning (Q学习)是一种用于 学习在未知环境中做出决策的方法 。它是基于值函数的方法,通过学习一个值函数 Q,该函数表示在给定状态和动作下,期望的累积奖励。 以下是一个简单的 Q-learning 的实现教程,使用 Python 进行演示。这里我们考虑一个简单的驾

    2024年01月24日
    浏览(42)
  • 【强化学习】常用算法之一 “SARSA”

      作者主页: 爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主 爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域. https://blog.csdn.net/Code_and516?type=blog 个人简介:打工人。 持续分

    2024年02月11日
    浏览(39)
  • 【强化学习】常用算法之一 “SAC”

      作者主页: 爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主 爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域. https://blog.csdn.net/Code_and516?type=blog 个人简介:打工人。 持续分

    2024年02月11日
    浏览(39)
  • 【强化学习】Q-learning训练AI走迷宫

    Q-learning? 最简单 的强化学习算法! 不需要 深度学习网络的算法! 带有概率性的 穷举 特性!(甚至还有一点点动态规划的感觉) Q-learning是一种基于强化学习的算法,用于解决 Markov决策过程 (MDP)中的问题。 这类问题我们理解为一种可以用 有限状态机 表示的问题。它具

    2024年01月22日
    浏览(47)
  • 【机器学习】强化学习(六)-DQN(Deep Q-Learning)训练月球着陆器示例

    概述 Deep Q-Learning(深度 Q 学习)是一种强化学习算法,用于解决决策问题,其中代理(agent)通过学习在不同环境中采取行动来最大化累积奖励。Lunar Lander 是一个经典的强化学习问题,其中代理的任务是控制一个着陆舱在月球表面着陆,最小化着陆过程中的燃料消耗。 以下

    2024年01月25日
    浏览(48)
  • Pytorch深度强化学习案例:基于Q-Learning的机器人走迷宫

    本专栏重点介绍强化学习技术的数学原理,并且 采用Pytorch框架对常见的强化学习算法、案例进行实现 ,帮助读者理解并快速上手开发。同时,辅以各种机器学习、数据处理技术,扩充人工智能的底层知识。 🚀详情:

    2024年02月04日
    浏览(45)
  • 强化学习应用(二):基于Q-learning的物流配送路径规划研究(提供Python代码)

    Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是使用一个Q值函数来估计每个状态动作对的价值。Q值表示在特定状态下采取某个动作所能获得

    2024年01月21日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包