利用python实现多元线性回归

这篇具有很好参考价值的文章主要介绍了利用python实现多元线性回归。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

本文介绍了如何用python进行回归分析

一、简单线性回归

直线回归分析是研究两变量(自变量和因变量)之间的依存关系及其关系的具体方程的形式。分析中所形成的这种关系式称为回归模型,其中以一条直线方程表明的两个变量的依存关系的模型叫一元线性回归模型。

二、多元线性回归

一元线性回归模型研究的是一个因变量与一个自变量之间呈直线趋势的数量关系。在实际问题中,常会遇到一个自变量与多个因变量数量关系的问题,这就需要我们建立多元线性回归模型。

三、对波士顿房价数据集进行多元线性回归分析

1、导入库

代码如下:

import numpy as np
import pandas as pd
from sklearn.datasets import load_boston

2.读入数据

代码如下:

# 读取网络数据
boston = load_boston()
# 数据包含14个字段,boston.data是前13个字段数据,boston.target是第13个字段'medv'的数据
col = ['crim','zn','indus','chas','nox','rm','age','dis','rad','tax','ptratio','b','lstat']
bostondf = pd.DataFrame(boston.data,columns=col)
bostondf['medv']=boston.target
bostondf.head()

利用python实现多元线性回归


 3、建立回归模型

#多元回归分析
import statsmodels.formula.api as smf
mod = smf.ols(formula='medv~crim+zn+indus+chas+nox+rm+age+dis+rad+tax+ptratio+b+lstat',data=bostondf)
res = mod.fit()
print(res.summary())

利用python实现多元线性回归

利用python实现多元线性回归

 从回归结果可以看出回归方程的可决系数是0.741,调整可决系数是0.734,F检验的P值远小于0.05,可以认为该回归方程的线性关系是显著的。对方程的每个自变量进行t检验,发现Indus和age两个自变量P值大于0.05,即这两个变量没有通过检验,他们与因变量的相关性较弱。

4、剔除剔除相关性较低的两个变量再进行回归分析

mod2 = smf.ols(formula='medv~crim+zn+chas+nox+rm+dis+rad+tax+ptratio+b+lstat',data=bostondf)
res2 = mod2.fit()
print(res2.summary())

利用python实现多元线性回归

可以看出剔除上述两个自变量之后所有变量都通过了检验 。文章来源地址https://www.toymoban.com/news/detail-512919.html

到了这里,关于利用python实现多元线性回归的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python预测——多元线性回归

    答辩结束了,把论文里有用的东西摘出来。 多元线性回归模型: 其中 y 为要预测的变量,x 为影响 y 值的变量,b 为回归系数,计算方式为: 计算结果为一个矩阵,分别对应b0,b1,b2,b3。 对猪肉价格进行预测,即猪肉价格作为 y,选择猪肉价格指数,生猪屠宰量,猪粮比作

    2024年02月03日
    浏览(36)
  • Python多元线性回归sklearn

    2024年01月24日
    浏览(48)
  • 基于Python多元线性回归模型

    提示:基于Python的多元线性回归模型 文章目录 前言 一、读取数据 二、建立模型  三、预测新值  四、去截距模型 总结 本文主要是基于多元回归线性模型,然后建立模型和分析,解决多元线性回归模型存在的问题和优化多元线性回归模型,原理就不多讲了,可查看《应用回

    2024年02月07日
    浏览(45)
  • 基于Python的多元线性回归分析

    一、多元线性回归分析(Multiple regression) 1.与简单线性回归相比较,具有多个自变量x 2.多元回归模型 其中是误差值,与简单线性回归分析中的要求特点相一致。其余的系数和截距为参数。 3.多元回归方程 4.估计多元回归方程(点估计) 5.估计方法 使方差和最小,即 从而得到一

    2024年02月06日
    浏览(39)
  • Python多元线性回归预测模型实验完整版

    实验目的 通过多元线性回归预测模型,掌握预测模型的建立和应用方法,了解线性回归模型的基本原理 实验内容 多元线性回归预测模型 实验步骤和过程 (1)第一步:学习多元线性回归预测模型相关知识。 一元线性回归模型反映的是单个自变量对因变量的影响,然而实际情况

    2024年02月09日
    浏览(38)
  • 数学建模matlab实现多元线性回归

            多元线性回归是统计学中一种常用的回归分析方法,用于研究多个自变量对一个连续因变量的关系。它基于线性假设,假设因变量与自变量之间存在线性关系。         在多元线性回归中,我们考虑多个自变量的影响,并试图找到一条最佳拟合直线(或超平面

    2024年02月02日
    浏览(48)
  • 学习记录2-多元线性回归模型(附上python代码)

    研究货运总量 y (万吨)与工业总产值 x1(亿元)、农业总产值 x2(亿元),居民非商品支出 X3 (亿元)的关系。数据见表3-9。 (1)计算出 y , x1 ,x2, x3 的相关系数矩阵。 (2)求 y 关于 x1 ,x2, x3 的三元线性回归方程。 (3)对所求得的方程做拟合优度检验。 (4)对回归方程做

    2024年02月03日
    浏览(43)
  • 机器学习~从入门到精通(二)线性回归算法和多元线性回归

    SimpleLinearRegression.py moduel_selection.py draft.py lin_fit(x,y) lin_fit2(x,y) x.shape y.shape MSE mean squared error 均方误差 R squared error

    2024年02月01日
    浏览(70)
  • Matlab 多元线性回归

    使用matlab对tif格式的遥感影像进行多元线性回归,建立用NDVI、EVI、VV、VH等数据反演地上森林生物量(AGB)的方程。 Y = a 0 + a 1 ∗ X 1 + a 2 ∗ X 2 + ⋅ ⋅ ⋅ + a n ∗ X n Y=a_0+a_1*X_1+a_2*X_2+···+a_n*X_n Y = a 0 ​ + a 1 ​ ∗ X 1 ​ + a 2 ​ ∗ X 2 ​ + ⋅ ⋅ ⋅ + a n ​ ∗ X n ​ 其中 Y Y Y 是

    2024年02月07日
    浏览(39)
  • 多元线性回归算法(matlab)

    b:回归系数点估计 bint:回归系数区间估计 r:残差 rint:置信区间 stats:用于检验的统计量,有三个数值,相关系数r^2,F值,与F对应的概率p alpha:显著性水平(缺省时为0.05) 说明:相关系数r^2越接近1,说明回归方程越显著; F越大,说明回归方程越显著 与F对应的概率pa(显著性水

    2024年02月07日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包