向量的点乘、叉乘和混合积(三重积)

这篇具有很好参考价值的文章主要介绍了向量的点乘、叉乘和混合积(三重积)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、三重矢积公式

设、、为三个向量,三重矢积公式

上述的两个公式也称为拉格朗日公式。 

三重矢积的公式有三个特性:

1) 两个分项都带有三个向量( 、、);

2) 三重积一定是先做叉积的两向量之线性组合;

3) 中间的向量所带的系数一定为正(此处为向量)。

二、标量三重积

特别的:

三、叉乘

3.1 叉乘的性质

逆交换律:

任意向量与自身的叉乘等于零向量:

 分配律:向量的点乘、叉乘和混合积(三重积)

3.2   在matlab中的表示

C = cross(A,B)

四、点乘

4.1 性质

交换律:

分配律:向量的点乘、叉乘和混合积(三重积)文章来源地址https://www.toymoban.com/news/detail-513062.html

4.2   在matlab中的表示

C = dot(A,B)

到了这里,关于向量的点乘、叉乘和混合积(三重积)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Unity中向量的点乘、叉乘区别和作用以及经典案例

    unity开发中我们要计算角度,判断位置,常用点乘、叉乘、归一化等等,我们看看他们的使用案例 点乘(Dot Product) 在Unity中的Vector3类提供了 Dot() 方法来计算两个向量的点乘。点乘的结果是一个标量值,可以用于判断两个向量的方向关系或者计算投影长度等。 叉乘(Cross P

    2024年04月28日
    浏览(39)
  • 矩阵的点乘与叉乘的区别

    矩阵点乘与叉乘是两种不同的运算。 矩阵点乘(也称为内积或数量积)是指两个相同维数的矩阵对应位置上元素的乘积之和。结果是一个标量(即一个实数或复数)。 矩阵叉乘(也称为向量积或外积)只能针对某些特定的对象进行,例如两个三维向量的叉乘。它的结果是一

    2023年04月15日
    浏览(47)
  • 【Unity每日一记】方位辨别—向量的叉乘点乘结合

    👨‍💻个人主页 :@元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏 : unity每日一记 ⭐【Unityc#专题篇】之c#系统化大礼包】 ⭐【unity数据持久化】数据管理类_PlayerPrfs ⭐【unity本站最全系列】unity常用API大全

    2024年02月12日
    浏览(31)
  • 【Unity每日一记】Unity中的方位辨别—向量的叉乘点乘结合

    👨‍💻个人主页 :@元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏 : unity每日一记 ⭐【Unityc#专题篇】之c#系统化大礼包】 ⭐【unity数据持久化】数据管理类_PlayerPrfs ⭐【unity本站最全系列】unity常用API大全

    2024年02月11日
    浏览(37)
  • 空间解析几何 | 向量、数量积、向量积、混合积、距离公式

       注: 通过公式我们可以发现,两个向量的 数量积 就是一个 数量 。 数量积 又称为 点积 或者 内积 。 ex: 在直角坐标系 {O; i , j , k } 中,设 α = (a1, a2, a3), β = (b1, b2, b3),     α • β = (a1 i + a2 j + a3 k ) •  (b1 i + b2 j + b3 k ) = a1b1 + a2b2 + a3b3    即两向量的数量积之和等于它

    2023年04月09日
    浏览(33)
  • matlab中矩阵点乘和乘的区别(超级简单)

    前提条件 :满足矩阵相乘的规则,即 前矩阵的列数等于后矩阵的行数 。 前提条件 :满足矩阵点乘的规则,即 前后矩阵维度相同 。 3.1 矩阵相乘 Example1: 这时如果用点乘就会报错 Example2: A 矩阵的列数等于B矩阵的行数 3.2 矩阵点乘 A , B 两个矩阵的维度都是相同的

    2023年04月10日
    浏览(34)
  • 【数理知识】矩阵普通乘积,哈达玛积,克罗内克积,点乘,点积,叉乘,matlab代码实现

    序号 内容 1 【数理知识】向量数乘,内积,外积,matlab代码实现 2 【数理知识】矩阵普通乘积,哈达玛积,克罗内克积,点乘,点积,叉乘,matlab代码实现 首先介绍矩阵 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。由 m × n m times n m × n 个数 a i j a_{ij} a ij ​

    2024年02月04日
    浏览(72)
  • 线性代数的学习和整理22:矩阵的点乘(草稿)

    4  矩阵乘法 A,B两个同阶同秩N阵,看上去结构一样,但两厢相乘,在做在右,地位差别巨大。 在左,你就是基,是空间的根本,是坐标系,是往哪去、能到哪的定海神针,是如来佛手;在右,你就只是乾坤已定后数量的选择,你是翻十个跟头,还是翻十一个(都出不了如来佛

    2024年02月09日
    浏览(51)
  • MATLAB中如何实现n个矩阵的点乘或相加

      - 如果你的矩阵都是同样的大小,你可以将它们存储在一个三维数组中,然后使用sum函数沿着第三个维度求和。例如,如果你有三个2×2的矩阵A、B和C,你可以这样做:   ```markdown M = cat(3,A,B,C); % 将A、B、C沿着第三个维度拼接成一个2×2×3的数组 S = sum(M,3); % 沿着第三个维度求

    2024年02月06日
    浏览(34)
  • 叉乘、向量积的计算以及推导

    几何图示: 设有 a = ( a x , a y , a z ) , b = ( b x , b y , b z ) mathbf{a}=left(a_{x}, a_{y}, a_{z}right), mathbf{b}=left(b_{x}, b_{y}, b_{z}right) a = ( a x ​ , a y ​ , a z ​ ) , b = ( b x ​ , b y ​ , b z ​ ) i , j , k 分别是 X , Y , Z 轴方向的单位向量,则: a × b = ( a y b z − a z b y ) i + ( a z b x − a

    2024年02月16日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包