Linux操作系统——第五章 进程信号

这篇具有很好参考价值的文章主要介绍了Linux操作系统——第五章 进程信号。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Linux操作系统——第五章 进程信号

 文章来源地址https://www.toymoban.com/news/detail-513126.html

 

 

目录

信号概念

用kill -l命令可以察看系统定义的信号列表

信号处理常见方式概览

产生信号

1. 通过终端按键产生信号

2. 调用系统函数向进程发信号

3. 由软件条件产生信号

4. 硬件异常产生信号

阻塞信号

1. 信号其他相关常见概念

2. 在内核中的表示

3. sigset_t

4. 信号集操作函数

sigprocmask

sigpending

捕捉信号

1. 内核如何实现信号的捕捉

2. sigaction

可重入函数


 



信号概念



信号是进程之间事件异步通知的一种方式,属于软中断


用kill -l命令可以察看系统定义的信号列表

Linux操作系统——第五章 进程信号

  • 每个信号都有一个编号和一个宏定义名称,这些宏定义可以在signal.h中找到,例如其中有定义 #define SIGINT 2
  • 编号34以上的是实时信号,本章只讨论编号34以下的信号,不讨论实时信号。这些信号各自在什么条件下产生,默认的处理动作是什么,在signal(7)中都有详细说明: man 7 signal 

 Linux操作系统——第五章 进程信号



信号处理常见方式概览



可选的处理动作有以下三种:
1. 忽略此信号。
2. 执行该信号的默认处理动作。
3. 提供一个信号处理函数,要求内核在处理该信号时切换到用户态执行这个处理函数,这种方式称为捕捉(Catch)一个信号。 



产生信号



1. 通过终端按键产生信号



SIGINT的默认处理动作是终止进程,SIGQUIT的默认处理动作是终止进程并且Core Dump

当一个进程要异常终止时,可以选择把进程的用户空间内存数据全部 保存到磁盘上,文件名通常是core,这叫做Core Dump。进程异常终止通常是因为有Bug,比如非法内存访问导致段错误,
事后可以用调试器检查core文件以查清错误原因,这叫做Post-mortem Debug(事后调试)。一个进程允许产生多大的core文件取决于进程的Resource Limit(这个信息保存 在PCB中)。默认是不允许产生core文件的,
因为core文件中可能包含用户密码等敏感信息,不安全。在开发调试阶段可以用ulimit命令改变这个限制,允许产生core文件。 首先用ulimit命令改变Shell进程的Resource Limit,允许core文件最大为1024K: $ ulimit -c 1024


2. 调用系统函数向进程发信号


kill命令是调用kill函数实现的。kill函数可以给一个指定的进程发送指定的信号。raise函数可以给当前进程发送指定的信号(自己给自己发信号)

#include <signal.h>
int kill(pid_t pid, int signo);
int raise(int signo);
这两个函数都是成功返回0,错误返回-1。

abort函数使当前进程接收到信号而异常终止。

#include <stdlib.h>
void abort(void);
就像exit函数一样,abort函数总是会成功的,所以没有返回值。 

3. 由软件条件产生信号



SIGPIPE是一种由软件条件产生的信号。

#include <unistd.h>
unsigned int alarm(unsigned int seconds);
调用alarm函数可以设定一个闹钟,也就是告诉内核在seconds秒之后给当前进程发SIGALRM信号, 该信号的默认处理动作是终止当前进程

这个函数的返回值是0或者是以前设定的闹钟时间还余下的秒数。打个比方,某人要小睡一觉,设定闹钟为30分钟之后响,20分钟后被人吵醒了,还想多睡一会儿,于是重新设定闹钟为15分钟之后响,“以前设定的闹钟时间还余下的时间”就是10分钟。如果seconds值为0,表示取消以前设定的闹钟,函数的返回值仍然是以前设定的闹钟时间还余下的秒数。


4. 硬件异常产生信号



硬件异常被硬件以某种方式被硬件检测到并通知内核,然后内核向当前进程发送适当的信号。

例如当前进程执行了除以0的指令,CPU的运算单元会产生异常,内核将这个异常解释 为SIGFPE信号发送给进程。

再比如当前进程访问了非法内存地址,,MMU会产生异常,内核将这个异常解释为SIGSEGV信号发送给进程。



阻塞信号



1. 信号其他相关常见概念



实际执行信号的处理动作称为信号递达(Delivery)
信号从产生到递达之间的状态,称为信号未决(Pending)。
进程可以选择阻塞 (Block )某个信号。
被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作.
注意,阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作。


2. 在内核中的表示



信号在内核中的表示示意图

Linux操作系统——第五章 进程信号

  • 每个信号都有两个标志位分别表示阻塞(block)未决(pending),还有一个函数指针表示处理动作。信号产生时,内核在进程控制块中设置该信号的未决标志,直到信号递达才清除该标志。在上图的例子中,SIGHUP信号未阻塞也未产生过,当它递达时执行默认处理动作。
  • SIGINT信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会改变处理动作之后再解除阻塞。
  • SIGQUIT信号未产生过,一旦产生SIGQUIT信号将被阻塞,它的处理动作是用户自定义函数sighandler。
  • 如果在进程解除对某信号的阻塞之前这种信号产生过多次,将如何处理?       
    •  POSIX.1允许系统递送该信号一次或多次。Linux是这样实现的:常规信号在递达之前产生多次只计一次,而实时信号在递达之前产生多次可以依次放在一个队列里。本章不讨论实时信号 

3. sigset_t



从上图来看,每个信号只有一个bit的未决标志,非0即1,不记录该信号产生了多少次,阻塞标志也是这样表示的。
因此,未决和阻塞标志可以用相同的数据类型sigset_t来存储,sigset_t称为信号集,这个类型可以表示每个信号的“有效”或“无效”状态,

在阻塞信号集中“有效”和“无效”的含义是该信号是否被阻塞,

而在未决信号集中“有效”和“无效”的含义是该信号是否处于未决状态。

阻塞信号集也叫做 当前进程的信号屏蔽字(Signal Mask),这里的“屏蔽”应该理解为阻塞而不是忽略。


4. 信号集操作函数



sigset_t类型对于每种信号用一个bit表示“有效”或“无效”状态,至于这个类型内部如何存储这些bit则依赖于系统实现,从使用者的角度是不必关心的,使用者只能调用以下函数来操作sigset_ t变量,而不应该对它的内部数据做任何解释,比如用printf直接打印sigset_t变量是没有意义的 

#include <signal.h>
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset (sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);
int sigismember(const sigset_t *set, int signo)

函数sigemptyset初始化set所指向的信号集,使其中所有信号的对应bit清零,表示该信号集不包含 任何有效信号。
函数sigfillset初始化set所指向的信号集,使其中所有信号的对应bit置位1,表示 该信号集的有效信号包括系统支持的所有信号。
注意,在使用sigset_ t类型的变量之前,一定要调 用sigemptyset或sigfillset做初始化,使信号集处于确定的状态。初始化sigset_t变量之后就可以在调用sigaddset和sigdelset在该信号集中添加或删除某种有效信号

这四个函数都是成功返回0,出错返回-1。sigismember是一个布尔函数,用于判断一个信号集的有效信号中是否包含
某种 信号,若包含则返回1,不包含则返回0,出错返回-1。


sigprocmask



调用函数sigprocmask可以读取或更改进程的信号屏蔽字(阻塞信号集)

#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oset);
返回值:若成功则为0,若出错则为-1

如果oset是非空指针,则读取进程的当前信号屏蔽字通过oset参数传出。

如果set是非空指针,则 更改进程的信号屏蔽字,参数how指示如何更改。

如果oset和set都是非空指针,则先将原来的信号 屏蔽字备份到oset里,然后根据set和how参数更改信号屏蔽字。假设当前的信号屏蔽字为mask,下表说明了how参数的可选值 

 Linux操作系统——第五章 进程信号

 如果调用sigprocmask解除了对当前若干个未决信号的阻塞,则在sigprocmask返回前,至少将其中一个信号递达。


sigpending


#include <signal.h>
sigpending (sigset_t *set)输出型参数  
读取当前进程的未决信号集,通过set参数传出。调用成功则返回0,出错则返回-1。 

Linux操作系统——第五章 进程信号 

 



捕捉信号



1. 内核如何实现信号的捕捉



如果信号的处理动作是用户自定义函数,在信号递达时就调用这个函数,这称为捕捉信号。由于信号处理函数的代码是在用户空间的,处理过程比较复杂,举例如下:

用户程序注册了SIGQUIT信号的处理函数sighandler。

当前正在执行main函数,这时发生中断或异常切换到内核态。 在中断处理完毕后要返回用户态的main函数之前检查到有信号SIGQUIT递达。

内核决定返回用户态后不是恢复main函数的上下文继续执行,而是执行sighandler函 数,sighandler
和main函数使用不同的堆栈空间,它们之间不存在调用和被调用的关系,是 两个独立的控制流程。

sighandler函数返回后自动执行特殊的系统调用sigreturn再次进入内核态。 如果没有新的信号要递达,这次再返回用户态就是恢复main函数的上下文继续执行了


2. sigaction


 #include <signal.h>
int sigaction(int signo, const struct sigaction *act, struct sigaction *oact);

 Linux操作系统——第五章 进程信号

 将sa_handler赋值为常数SIG_IGN传给sigaction表示忽略信号,赋值为常数SIG_DFL表示执行系统默认动作,赋值为一个函数指针表示用自定义函数捕捉信号,或者说向内核注册了一个信号处理函 数,该函数返回值为void,可以带一个int参数,通过参数可以得知当前信号的编号,这样就可以用同一个函数处理多种信号。显然,这也是一个回调函数,不是被main函数调用,而是被系统所调用。


当某个信号的处理函数被调用时,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么 它会被阻塞到当前处理结束为止。

如果在调用信号处理函数时,除了当前信号被自动屏蔽之外,还希望自动屏蔽另外一些信号,则用sa_mask字段说明这些需要额外屏蔽的信号,当信号处理函数返回时自动恢复原来的信号屏蔽字。 sa_flags字段包含一些选项,本章的代码都把sa_flags设为0,sa_sigaction是实时信号的处理函数。

 



可重入函数



  • 如果一个函数符合以下条件之一则是不可重入的:
    • 调用了malloc或free,因为malloc也是用全局链表来管理堆的。
    • 调用了标准I/O库函数。标准I/O库的很多实现都以不可重入的方式使用全局数据结构 

只有当接收进程从内核模式返回到用户模式时,才处理信号。

Linux操作系统——第五章 进程信号

 

 

到了这里,关于Linux操作系统——第五章 进程信号的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Linux操作系统篇:进程

    我们常见的计算机,如笔记本。我们不常见的计算机,如服务器,大部分都遵守冯诺依曼体系 为什么计算机要采用冯诺依曼体系呢? 在计算机出现之前有很多人都提出过计算机体系结构,但最终选择冯诺依曼是因为用比较少的钱就可以做出效率不错的计算机 截至目前,我们

    2024年03月18日
    浏览(44)
  • Linux--操作系统进程的状态

    【Linux】进程概念 —— 进程状态_linux d状态进程_Hello_World_213的博客-CSDN博客 新建: 字面意思,将你的task_struct创建出来并且还未入队列 运行: task_struct结构体在运行队列中排队,就叫做运行态 阻塞: 等待非CPU资源就绪,阻塞状态   挂起: 当内存不足的时候,OS通过适当的

    2024年02月15日
    浏览(48)
  • 【Linux】操作系统与进程的概念

    目录 冯诺依曼体系 注意 为什么CPU不直接访问输入或输出设备? 跨主机间数据的传递 操作系统 管理 进程 描述进程 进程的查看和终止  bash 通过系统调用创建子进程 fork的辨析 🥖冯·诺依曼结构也称普林斯顿结构,是一种 将程序指令存储器和数据存储器合并在一起的存储器

    2024年01月18日
    浏览(45)
  • 操作系统课程设计-Linux 进程控制

    目录 前言 1 实验题目 2 实验目的 3 实验内容 3.1 进程的创建 3.1.1 步骤 3.1.2 关键代码 3.2 子进程执行新任务 3.2.1 步骤 3.2.2 关键代码 4 实验结果与分析 4.1 进程的创建 4.2 子进程执行新任务 5 代码 5.1 进程的创建 5.2 子进程执行新任务          本实验为课设内容,博客内容为

    2024年01月18日
    浏览(48)
  • 【Linux】进程概念(冯诺依曼体系结构、操作系统、进程)-- 详解

    1、概念 (1)什么是冯诺伊曼体系结构? 数学家冯·诺伊曼于 1946 年提出存储程序原理,把程序本身当作数据来对待,程序和该程序处理的数据用同样的方式储存。 冯·诺伊曼理论的要点是:计算机的数制采用二进制逻辑;计算机应该按照程序顺序执行。人们把冯·诺伊曼的

    2024年02月22日
    浏览(48)
  • 操作系统练习:在Linux上创建进程,及查看进程状态

    进程在执行过程中可以创建多个新的进程。创建进程称为“父进程”,新的进程称为“子进程”。每个新的进程可以再创建其他进程,从而形成进程树。 每个进程都有一个唯一的进程标识符(process identifier,pid)。在Linux中,init进程是所有其他进程的根进程。 在Linux中,可以

    2024年02月12日
    浏览(51)
  • 【Linux】初步理解操作系统和进程概念

    操作系统是一款纯正的 “搞管理” 的文件 。 那操作系统为什么要管理文件? “管理” 又是什么? 它是怎么管理的? 1.操作系统帮助用户,管理好底层的软硬件资源; 2.为了给用户提供一个良好,安全的环境 即操作系统通过管理好底层的软硬件资源,为用户提供一个良好

    2024年02月15日
    浏览(38)
  • Linux操作系统-06-进程与服务管理

    使用ps命令查看进程。包括过滤进程信息 使用systemctl命令管理和运行Linux服务 进程(Process):操作系统正在运行的应用程序。任意一个进程,都会消耗CPU和内存资源, 服务(Service):通过服务控制面板直接启动的应用程序,也可能是操作系统启动时自启动的后台应用程序。

    2024年03月12日
    浏览(49)
  • Linux操作系统——第二章 进程控制

        目录 进程创建 fork函数初识 fork函数返回值 写时拷贝 fork常规用法 fork调用失败的原因 进程终止 进程退出场景 进程常见退出方法 _exit函数 exit函数 return退出 进程等待 进程等待必要性 进程等待的方法 wait方法 waitpid方法 获取子进程status 进程程序替换 替换原理 替换函数

    2024年02月08日
    浏览(46)
  • 麒麟操作系统(Linux)使用和维护:进程相关的操作命令

      目录 1. 查看进程 2. top命令实时监控进程 3. 杀死进程 4. 图形界面查看和杀死进程         作为国产操作系统,无论是银河麒麟,还是中标麒麟,它们的服务器操作系统或者桌面操作系统,已经广泛应用于工业生产和科学研究领域。因为麒麟操作系统的内核是Linux系统内

    2024年02月04日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包