对数换底公式及推导证明

这篇具有很好参考价值的文章主要介绍了对数换底公式及推导证明。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、基本概念

在数学中,对数是对求幂的逆运算,正如除法是乘法的逆运算,反之亦然。如果ax次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作 x = l o g a N x=log_a N x=logaN 。其中,a叫做对数的底数,N叫做真数。 x = l o g a N x=log_a N x=logaN 等价于 a x = N a^x=N ax=N

  • 特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lgN
  • 称以无理数e(e=2.71828…)为底的对数称为自然对数(natural logarithm),并记为lnN
  • 零没有对数,因为任何数的幂都不可能为0。
  • 在实数范围内,负数无对数。在虚数范围内,负数是有对数的。

对数的图像如下:
对数换底公式及推导证明
对数的常用性质:
对数换底公式及推导证明

二、换底公式

对数换底公式及推导证明文章来源地址https://www.toymoban.com/news/detail-513147.html

到了这里,关于对数换底公式及推导证明的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性回归基本原理和公式推导

    回复我们公众号“1号程序员”的“E001”可以获取《BAT机器学习面试1000题》下载链接。[关注并回复:【E001】] 线性回归是一种监督式机器学习算法,它计算因变量与一个或多个独立特征之间的线性关系。当独立特征的数量为1时,被称为单变量线性回归;在存在多于一个特征

    2024年02月11日
    浏览(46)
  • 【数学建模】常用微分方程模型 + 详细手写公式推导 + Matlab代码实现

    微分方程基本概念 微分方程在数学建模中的应用 微分方程常用模型(人口增长模型、传染病模型) 2022.06.19 微分方程,是指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。 微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中

    2024年02月09日
    浏览(67)
  • Roofline模型(一):概念、基本公式、图像分析

    参考文献: Samuel Williams, Roofline Performance Modeling for HPC and Deep Learning Applications, https://crd.lbl.gov/assets/Uploads/S21565-Roofline-1-Intro.pdf YouTube English Presentation:Roofline Hackathon 2020 part 1 and 2 - YouTube 1、假设在GPU上对内核的循环测试进行性能分析,我们对不同的loop nest得到了随机的flop ra

    2024年02月04日
    浏览(32)
  • 5.2 构造数值积分公式的基本方法与有关概念的例题分析

      确定求积公式 中的系数,使其具有尽可能高的代数精度。 我的答案: 一、信息 1.给了我一个求积公式 2.确定求积公式中的系数 3.使得这个求积系数具有尽可能高的代数精度。 二、分析 条件1:告诉我这个求积公式具体有3个未知量 条件2:告诉我此次问题解答的目标1是确定

    2024年02月01日
    浏览(50)
  • 【考研数学】概率论与数理统计 | 第一章——随机事件与概率(2,概率基本公式与事件独立)

    承接上文,继续介绍概率论与数理统计第一章的内容。 P ( A − B ) = P ( A B ‾ ) = P ( A ) − P ( A B ) . P(A-B)=P(A overline{B} )=P(A)-P(AB). P ( A − B ) = P ( A B ) = P ( A ) − P ( A B ) . 证明: A = ( A − B ) + A B A=(A-B)+AB A = ( A − B ) + A B ,且 A − B A-B A − B 与 A B AB A B 互斥,根据概率的有限可加

    2024年02月12日
    浏览(51)
  • 离散数学:图的基本概念

    本帖子讨论图的基本概念,这一章,我们将利用有序对和二元关系的概念定义图。图分为了无向图和有向图,他们有共性也有区别,请大家注意体会,用联系和辩证的观点去认识。 注意无向图和有向图的表示,最大区别在于边的集合的表示,无向图中边集为无序集VV的子集,

    2024年02月09日
    浏览(53)
  • 离散数学 第十章 图的基本概念

    目录 10.1 图的基本概念 10.2 道路与回路 10.3 图的连通性 10.4 图的矩阵表示 ①什么是图:一个序偶(V,E),记作G=(V,E)                          V(G)={v1,v2,...,vn} 结点集,n为G的阶                         E(G)={e1,e2,...,em} 边集,m为G的边数 ②图的分类: 1.无向图

    2024年02月07日
    浏览(47)
  • 离散数学-图论-图的基本概念(11)

    1.1 图的定义 定义1: 一个 无向图 G是一个有序的二元组V,E,其中 (1)V是一个非空有穷集,称为顶点集,其元素称为顶点或结点。 (2)E是无序积VV的有穷多重子集,称为边集,其元素称为无向边,简称边。 定义2: 一个 有向图 D是一个有序的二元组V,E,其中 (1)V是一个非

    2024年02月13日
    浏览(49)
  • 【数学建模】马氏链模型(基本概念+正则链+吸收链)

    对于有随机因素影响的动态系统,系统从这个时期到下个时期的状态按照一定的概率进行转移,并且下个时期的状态只取决于这个时期的状态和转移概率。 无后效性:已知现在,将来与历史无关。 具有无后效性,时间、状态均为离散的随机转移过程通常用马氏链模型描述。

    2023年04月14日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包