目录
环境安装
黑白照片上色
文生图-Stable Diffusion
文生图-Dreambooth
图生图-ControlNet-Canny
图生图-ControlNet-Pose
图生图-ControlNet Animation
训练自己的ControlNet
环境安装
mim install mmagic
pip install opencv-python pillow matplotlib seaborn tqdm -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install clip transformers gradio 'httpx[socks]' diffusers==0.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
mim install 'mmdet>=3.0.0'
# 检查 Pytorch
import torch, torchvision
print('Pytorch 版本', torch.__version__)
print('CUDA 是否可用',torch.cuda.is_available())
# 检查 mmcv
import mmcv
from mmcv.ops import get_compiling_cuda_version, get_compiler_version
print('MMCV版本', mmcv.__version__)
print('CUDA版本', get_compiling_cuda_version())
print('编译器版本', get_compiler_version())
# 检查 mmagic
import mmagic
print('MMagic版本', mmagic.__version__)
黑白照片上色
下载样例图
python demo/mmagic_inference_demo.py --model-name inst_colorization --img data/test_colorization.jpg --result-out-dir outpusts/out_colorization.png
样例效果:测试结果:
文生图-Stable Diffusion
from mmagic.apis import MMagicInferencer
# 载入 Stable Diffusion 模型
sd_inferencer = MMagicInferencer(model_name='stable_diffusion')
# 指定Prompt文本
text_prompts = 'A panda is having dinner at KFC'
text_prompts = 'A Persian cat walking in the streets of New York'
# 执行预测
sd_inferencer.infer(text=text_prompts, result_out_dir='outputs/sd_res.png')
测试效果:
文生图-Dreambooth
在数据集上训练Dreambooth, 数据集下载链接
python .\tools\train.py .\configs\dreambooth\dreambooth-lora.py
用训练好的模型做预测
import torch
from mmengine import Config
from mmagic.registry import MODELS
from mmagic.utils import register_all_modules
register_all_modules()
cfg = Config.fromfile('configs/dreambooth/dreambooth-lora.py')
dreambooth_lora = MODELS.build(cfg.model)
state = torch.load('work_dirs/dreambooth-lora/iter_1000.pth')['state_dict']
def convert_state_dict(state):
state_dict_new = {}
for k, v in state.items():
if '.module' in k:
k_new = k.replace('.module', '')
else:
k_new = k
if 'vae' in k:
if 'to_q' in k:
k_new = k.replace('to_q', 'query')
elif 'to_k' in k:
k_new = k.replace('to_k', 'key')
elif 'to_v' in k:
k_new = k.replace('to_v', 'value')
elif 'to_out' in k:
k_new = k.replace('to_out.0', 'proj_attn')
state_dict_new[k_new] = v
return state_dict_new
dreambooth_lora.load_state_dict(convert_state_dict(state))
dreambooth_lora = dreambooth_lora.cuda()
samples = dreambooth_lora.infer('side view of sks dog', guidance_scale=5)
samples = dreambooth_lora.infer('ear close-up of sks dog', guidance_scale=5)
图生图-ControlNet-Canny
import cv2
import numpy as np
import mmcv
from mmengine import Config
from PIL import Image
from mmagic.registry import MODELS
from mmagic.utils import register_all_modules
register_all_modules()
#载入ControNet模型
cfg = Config.fromfile('configs/controlnet/controlnet-canny.py')
controlnet = MODELS.build(cfg.model).cuda()
#输入Canny边缘图
control_url = 'https://user-images.githubusercontent.com/28132635/230288866-99603172-04cb-47b3-8adb-d1aa532d1d2c.jpg'
control_img = mmcv.imread(control_url)
control = cv2.Canny(control_img, 100, 200)
control = control[:, :, None]
control = np.concatenate([control] * 3, axis=2)
control = Image.fromarray(control)
#咒语Prompt
prompt = 'Room with blue walls and a yellow ceiling.'
#执行预测
output_dict = controlnet.infer(prompt, control=control)
samples = output_dict['samples']
for idx, sample in enumerate(samples):
sample.save(f'sample_{idx}.png')
controls = output_dict['controls']
for idx, control in enumerate(controls):
control.save(f'control_{idx}.png')
图生图-ControlNet-Pose
import mmcv
from mmengine import Config
from PIL import Image
from mmagic.registry import MODELS
from mmagic.utils import register_all_modules
register_all_modules()
# 载入ControlNet模型
cfg = Config.fromfile('configs/controlnet/controlnet-pose.py')
# convert ControlNet's weight from SD-v1.5 to Counterfeit-v2.5
cfg.model.unet.from_pretrained = 'gsdf/Counterfeit-V2.5'
cfg.model.vae.from_pretrained = 'gsdf/Counterfeit-V2.5'
cfg.model.init_cfg['type'] = 'convert_from_unet'
controlnet = MODELS.build(cfg.model).cuda()
# call init_weights manually to convert weight
controlnet.init_weights()
# 咒语Prompt
prompt = 'masterpiece, best quality, sky, black hair, skirt, sailor collar, looking at viewer, short hair, building, bangs, neckerchief, long sleeves, cloudy sky, power lines, shirt, cityscape, pleated skirt, scenery, blunt bangs, city, night, black sailor collar, closed mouth'
# 输入Pose图
control_url = 'https://user-images.githubusercontent.com/28132635/230380893-2eae68af-d610-4f7f-aa68-c2f22c2abf7e.png'
control_img = mmcv.imread(control_url)
control = Image.fromarray(control_img)
control.save('control.png')
# 执行预测
output_dict = controlnet.infer(prompt, control=control, width=512, height=512, guidance_scale=7.5)
samples = output_dict['samples']
for idx, sample in enumerate(samples):
sample.save(f'sample_{idx}.png')
controls = output_dict['controls']
for idx, control in enumerate(controls):
control.save(f'control_{idx}.png')
图生图-ControlNet Animation
方式一:Gradio命令行
python .\demo\gradio_controlnet_animation.py
方式二:MMagic API 文章来源:https://www.toymoban.com/news/detail-513274.html
# 导入工具包
from mmagic.apis import MMagicInferencer
# Create a MMEdit instance and infer
editor = MMagicInferencer(model_name='controlnet_animation')
# 指定 prompt 咒语
prompt = 'a girl, black hair, T-shirt, smoking, best quality, extremely detailed'
negative_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
# 待测视频
# https://user-images.githubusercontent.com/12782558/227418400-80ad9123-7f8e-4c1a-8e19-0892ebad2a4f.mp4
video = '../run_forrest_frames_rename_resized.mp4'
save_path = '../output_video.mp4'
# 执行预测
editor.infer(video=video, prompt=prompt, image_width=512, image_height=512, negative_prompt=negative_prompt, save_path=save_path)
训练自己的ControlNet
下载数据集文章来源地址https://www.toymoban.com/news/detail-513274.html
python .\tools\train.py .\configs\controlnet\controlnet-1xb1-fill50k.py
到了这里,关于AI实战营:生成模型+底层视觉+AIGC多模态 算法库MMagic的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!