变分自编码器(VAE)公式推导

这篇具有很好参考价值的文章主要介绍了变分自编码器(VAE)公式推导。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

论文原文:Auto-Encoding Variational Bayes [OpenReview (ICLR 2014) | arXiv]

本文记录了我在学习 VAE 过程中的一些公式推导和思考。如果你希望从头开始学习 VAE,建议先看一下苏剑林的博客(本文末尾有链接)。

VAE 的整体框架

VAE 认为,随机变量 \(\boldsymbol{x} \sim p(\boldsymbol{x})\) 由两个随机过程得到:

  1. 根据先验分布 \(p(\boldsymbol{z})\) 生成隐变量 \(\boldsymbol{z}\)
  2. 根据条件分布 \(p(\boldsymbol{x} | \boldsymbol{z})\)\(\boldsymbol{z}\) 得到 \(\boldsymbol{x}\)

于是 \(p(\boldsymbol{x}, \boldsymbol{z}) = p(\boldsymbol{z})p(\boldsymbol{x} | \boldsymbol{z})\) 就是我们所需要的生成模型。

一种朴素的想法是:先用随机数生成器生成隐变量 \(\boldsymbol{z}\),然后用 \(p(\boldsymbol{x} | \boldsymbol{z})\)\(\boldsymbol{z}\) 中生成出(或者说重构出) \(\boldsymbol{x}\),通过最小化重构损失来训练模型。这个想法的问题在于:我们无法找到生成的样本与原始样本之间的对应关系,重构损失算不了,无法训练。

VAE 的做法是引入后验分布 \(p(\boldsymbol{z} | \boldsymbol{x})\),训练过程变为:

  1. 采样一批原始样本 \(\boldsymbol{x}\)
  2. \(p(\boldsymbol{z} | \boldsymbol{x})\) 获得每个样本 \(\boldsymbol{x}\) 对应的隐变量 \(\boldsymbol{z}\)
  3. \(p(\boldsymbol{x} | \boldsymbol{z})\) 从隐变量 \(\boldsymbol{z}\) 中重构出 \(\boldsymbol{x}\),通过最小化重构损失来训练模型。

从这个角度来看,\(p(\boldsymbol{z} | \boldsymbol{x})\) 相当于编码器\(p(\boldsymbol{x} | \boldsymbol{z})\) 相当于解码器,训练结束后只需要保留解码器 \(p(\boldsymbol{x} | \boldsymbol{z})\) 即可。

除了重构损失以外,VAE 还有一项 KL 散度损失,希望近似的后验分布 \(q(\boldsymbol{z} | \boldsymbol{x})\) 尽量接近先验分布 \(p(\boldsymbol{z})\),即最小化二者的 KL 散度。

变分下界的推导

现有 \(N\) 个由分布 \(P(\boldsymbol{x}; \boldsymbol{\theta})\) 生成的样本 \(\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(N)}\),我们可以使用极大似然估计从这些样本中估计出分布的参数 \(\boldsymbol{\theta}\),即

\[\begin{aligned} \boldsymbol{\theta} & = \operatorname*{argmax}_{\boldsymbol{\theta}} p(\boldsymbol{x}^{(1)}; \boldsymbol{\theta}) \cdots p(\boldsymbol{x}^{(N)}; \boldsymbol{\theta}) \\ & = \operatorname*{argmax}_{\boldsymbol{\theta}} \ln(p(\boldsymbol{x}^{(1)}; \boldsymbol{\theta}) \cdots p(\boldsymbol{x}^{(N)}; \boldsymbol{\theta})) \\ & = \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{i=1}^n \ln p(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}). \end{aligned} \]

后验分布 \(p(\boldsymbol{z} | \boldsymbol{x}) = \frac{p(\boldsymbol{z})p(\boldsymbol{x} | \boldsymbol{z})}{p(\boldsymbol{x})} = \frac{p(\boldsymbol{z})p(\boldsymbol{x} | \boldsymbol{z})}{\int_{\boldsymbol{z}} p(\boldsymbol{x}, \boldsymbol{z}) \mathrm{d}\boldsymbol{z}}\) 是 intractable 的,因为分母处的边缘分布 \(p(\boldsymbol{x})\) 积不出来。具体来说,联合分布 \(p(\boldsymbol{x}, \boldsymbol{z}) = p(\boldsymbol{z})p(\boldsymbol{x} | \boldsymbol{z})\) 的表达式非常复杂,\(\int_{\boldsymbol{z}} p(\boldsymbol{x}, \boldsymbol{z}) \mathrm{d}\boldsymbol{z}\) 这个积分找不到解析解。

需要使用变分推断解决后验分布无法计算的问题。我们使用一个形式已知的分布 \(q(\boldsymbol{z}|\boldsymbol{x}^{(i)}; \boldsymbol{\phi})\)近似后验分布 \(p(\boldsymbol{z}|\boldsymbol{x}^{(i)}; \boldsymbol{\theta})\),于是有

\[\begin{aligned} \log p(\boldsymbol{x}^{(i)}) & = \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) - \log p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] \mathrm{d}\boldsymbol{z} + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] \mathrm{d}\boldsymbol{z} + \log p(\boldsymbol{x}^{(i)}) \cdot 1 \\ & = \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})\log\frac{q(\boldsymbol{z}|\boldsymbol{x}^{(i)})}{p(\boldsymbol{z}|\boldsymbol{x}^{(i)})} \mathrm{d}\boldsymbol{z} + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] \mathrm{d}\boldsymbol{z} + \log p(\boldsymbol{x}^{(i)}) \cdot \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})\mathrm{d}\boldsymbol{z} \\ & = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] \mathrm{d}\boldsymbol{z} + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})\log p(\boldsymbol{x}^{(i)}) \mathrm{d}\boldsymbol{z} \\ & = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{x}^{(i)})] \mathrm{d}\boldsymbol{z} \\ & = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log (p(\boldsymbol{z}|\boldsymbol{x}^{(i)})p(\boldsymbol{x}^{(i)}))] \mathrm{d}\boldsymbol{z} \\ & = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{x}^{(i)}, \boldsymbol{z})] \mathrm{d}\boldsymbol{z} \\ & = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z}|\boldsymbol{x}^{(i)})}[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{x}^{(i)}, \boldsymbol{z})] \\ & = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + L(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}^{(i)}) \\ & \geq L(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}^{(i)}). \end{aligned} \]

利用 KL 散度大于等于 0 这一特性,我们得到了对数似然 \(\log p(\boldsymbol{x}^{(i)})\) 的一个下界 \(L(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}^{(i)})\),于是可以将最大化对数似然改为最大化这个下界。

这个下界可以进一步写成

\[\begin{aligned} L(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}^{(i)}) & = \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{x}^{(i)}, \boldsymbol{z})] \mathrm{d}\boldsymbol{z} \\ & = \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log (p(\boldsymbol{z})p(\boldsymbol{x}^{(i)}|\boldsymbol{z}))] \mathrm{d}\boldsymbol{z} \\ & = \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{z}) + \log p(\boldsymbol{x}^{(i)}|\boldsymbol{z})] \mathrm{d}\boldsymbol{z} \\ & = -\int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) - \log p(\boldsymbol{z})] \mathrm{d}\boldsymbol{z} + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})\log p(\boldsymbol{x}^{(i)}|\boldsymbol{z})] \mathrm{d}\boldsymbol{z} \\ & = -\mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z})] + \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z}|\boldsymbol{x}^{(i)})}[\log p(\boldsymbol{x}^{(i)}|\boldsymbol{z})]. \\ \end{aligned} \]

其中的第一项是 KL 散度损失,第二项是重构损失。

KL 散度损失

使用标准正态分布作为先验分布,即 \(p(\boldsymbol{z}) = N(\boldsymbol{z}; \boldsymbol{0}, \boldsymbol{I})\)

使用一个由 MLP 的输出来参数化的正态分布作为近似后验分布,即 \(q(\boldsymbol{z}|\boldsymbol{x}^{(i)}; \boldsymbol{\phi}) = N(\boldsymbol{z}; \boldsymbol{\mu}(\boldsymbol{x}^{(i)}; \boldsymbol{\phi}), \boldsymbol{\sigma}^2(\boldsymbol{x}^{(i)}; \boldsymbol{\phi})\boldsymbol{I})\)

选择正态分布的好处在于 KL 散度的这个积分可以写出解析解,训练时直接按照公式计算即可,无需通过采样的方式来算积分。

由于我们选择的是各分量独立的多元正态分布,因此只需要推导一元正态分布的情形即可:

\[\begin{aligned} \mathrm{KL}[N(z; \mu, \sigma^2), N(z; 0, 1)] & = \int_z N(z; \mu, \sigma^2)\log\frac{N(z; \mu, \sigma^2)}{N(z; 0, 1)} \mathrm{d}z \\ & = \int_z N(z; \mu, \sigma^2) \log\frac{\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(z - \mu)^2}{2\sigma^2}\right)}{\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{z^2}{2}\right)} \mathrm{d}z \\ & = \int_z N(z; \mu, \sigma^2) \log\left(\frac{1}{\sqrt{\sigma^2}}\exp\left(\frac{1}{2}\left(-\frac{(z - \mu^2)^2}{\sigma^2} + z^2\right)\right)\right) \mathrm{d}z \\ & = \frac{1}{2}\int_z N(z; \mu, \sigma^2) \left(-\log\sigma^2 - \frac{(z - \mu)^2}{\sigma^2} + z^2\right)\mathrm{d}z \\ & = \frac{1}{2}\left(-\log\sigma^2\int_z N(z; \mu, \sigma^2) \mathrm{d}z - \frac{1}{\sigma^2}\int_z N(z; \mu, \sigma^2)(z - \mu)^2\mathrm{d}z + \int_z N(z; \mu, \sigma^2)z^2\mathrm{d}z\right) \\ & = \frac{1}{2}\left(-\log\sigma^2 \cdot 1 - \frac{1}{\sigma^2} \cdot \sigma^2 + \mu^2 + \sigma^2\right) \\ & = \frac{1}{2}(-\log\sigma^2 - 1 + \mu^2 + \sigma^2). \end{aligned} \]

解释一下倒数第三行的三个积分:

  1. \(\int_z N(z; \mu, \sigma^2) \mathrm{d}z\) 是概率密度函数的积分,也就是 1。
  2. \(\int_z N(z; \mu, \sigma^2)(z - \mu)^2\mathrm{d}z\) 是方差的定义,也就是 \(\sigma^2\)
  3. \(\int_z N(z; \mu, \sigma^2)z^2\mathrm{d}z\) 是正态分布的二阶矩,结果为 \(\mu^2 + \sigma^2\)

重构损失

伯努利分布模型

\(\boldsymbol{x}\) 是二值向量时,可以用伯努利分布(两点分布)来建模 \(p(\boldsymbol{x}|\boldsymbol{z})\),即认为向量 \(\boldsymbol{x}\) 的每个维度都服从对应的相互独立的伯努利分布。使用一个 MLP 来计算各维度所对应的伯努利分布的参数,第 \(i\) 维伯努利分布的参数为 \(y_i = \boldsymbol{y}(\boldsymbol{z})_i\),于是有

\[p(\boldsymbol{x}|\boldsymbol{z}) = \prod_{i=1}^D y_i^{x_i}(1 - y_i)^{1 - x_i}, \]
\[\log p(\boldsymbol{x}|\boldsymbol{z}) = \sum_{i=1}^D x_i\log y_i + (1 - x_i)\log(1 - y_i). \]

其中 \(D\) 表示向量 \(\boldsymbol{x}\) 的维度。可见此时最大化 \(\log p(\boldsymbol{x}|\boldsymbol{z})\) 等价于最小化交叉熵损失。

正态分布模型

\(\boldsymbol{x}\) 是实值向量时,可以用正态分布来建模 \(p(\boldsymbol{x}|\boldsymbol{z})\)。使用一个 MLP 来计算正态分布的参数,于是有

\[\begin{aligned} p(\boldsymbol{x}|\boldsymbol{z}) & = N(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\sigma}^2\boldsymbol{I}) \\ & = \prod_{i=1}^D N(x_i; \mu_i, \sigma_i^2) \\ & = \left(\prod_{i=1}^D\frac{1}{\sqrt{2\pi}\sigma_i}\right)\exp\left(\sum_{i=1}^D-\frac{(x_i - \mu_i)^2}{2\sigma_i^2}\right), \end{aligned} \]
\[\log p(\boldsymbol{x}|\boldsymbol{z}) = -\frac{D}{2}\log 2\pi - \frac{1}{2}\sum_{i=1}^D\log\sigma_i^2 - \frac{1}{2}\sum_{i=1}^D\frac{(x_i - \mu_i)^2}{\sigma_i^2}. \]

很多时候我们会假设 \(\sigma_i^2\) 是一个常数,于是 MLP 只需要输出均值参数 \(\boldsymbol{\mu}\) 即可。此时有

\[\log p(\boldsymbol{x}|\boldsymbol{z}) \sim -\frac{1}{2}\sum_{i=1}^D(x_i - \mu_i)^2 = -\frac{1}{2}\|\boldsymbol{x} - \boldsymbol{\mu}(\boldsymbol{z})\|^2. \]

可见此时最大化 \(\log p(\boldsymbol{x}|\boldsymbol{z})\) 等价于最小化 MSE 损失。

重参数化技巧

需要使用重参数化技巧解决采样 \(z\) 时不可导的问题。解决的思路是先从无参数分布中采样一个 \(\varepsilon\),再通过变换得到 \(z\)

\(N(\mu, \sigma^2)\) 中采样一个 \(z\),相当于先从 \(N(0, 1)\) 中采样一个 \(\varepsilon\),然后令 \(z = \mu + \varepsilon\cdot\sigma\)

相关知识

技巧,通过取对数把乘除变成加减:

\[\ln ab = \ln a + \ln b,\ \ln\frac{a}{b} = \ln a - \ln b. \]

随机变量的函数的期望:

\[\mathbb{E}_{x \sim P(x)} g(x) = \int_x p(x)g(x) \mathrm{d}x, \]

利用此公式可以将积分改写成期望的形式,这样就可以用采样的方式计算积分了(蒙特卡罗积分法)。

条件概率密度的定义:

\[p_{Y|X}(y|x) = \frac{p(x, y)}{p_X(x)}, \]

此处的 \(p\) 并不是概率而是概率密度函数,但是这个公式在形式上跟条件概率公式是一样的。

参考资料

苏剑林的 VAE 系列博客:

  • 变分自编码器(一):原来是这么一回事 - 科学空间
  • 变分自编码器(二):从贝叶斯观点出发 - 科学空间
  • 变分自编码器(三):这样做为什么能成? - 科学空间

15 分钟了解变分推理:文章来源地址https://www.toymoban.com/news/detail-513351.html

  • 【15分钟】了解变分推理 - 哔哩哔哩
  • 【15分钟】了解变分自编码器 - 哔哩哔哩

到了这里,关于变分自编码器(VAE)公式推导的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 变分自编码器(VAE)PyTorch Lightning 实现

    ✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。 🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 变分自编码器 (Variational Autoencoder,VAE)是一

    2024年02月21日
    浏览(50)
  • AIGC实战——变分自编码器(Variational Autoencoder, VAE)

    我们已经学习了如何实现自编码器,并了解了自编码器无法在潜空间中的空白位置处生成逼真的图像,且空间分布并不均匀,为了解决这些问题#

    2024年02月05日
    浏览(37)
  • 理解 Stable Diffusion、模型检查点(ckpt)和变分自编码器(VAE)

            在探索深度学习和人工智能领域的旅途中,理解Stable Diffusion、模型检查点(ckpt)以及变分自编码器(VAE)之间的关系至关重要。这些组件共同构成了当下一些最先进图像生成系统的基础。本文将为初学者提供一个详细的概述,帮助您理解这些概念以及它们是如何协同工作

    2024年01月21日
    浏览(44)
  • 简要介绍 | 生成模型的演进:从自编码器(AE)到变分自编码器(VAE)和生成对抗网络(GAN),再到扩散模型

    注1:本文系“简要介绍”系列之一,仅从概念上对生成模型(包括AE, VAE, GAN,以及扩散模型)进行非常简要的介绍,不适合用于深入和详细的了解。 生成模型在机器学习领域已经成为了一个热门的研究领域。它们的主要目标是学习数据的真实分布,以便能够生成新的、与真

    2024年02月14日
    浏览(49)
  • AI绘画——Stable Diffusion模型,变分自编码器(VAE)模型 , lora模型——调配设置与分享

    目录 Stable Diffusion模型 模型调配 模型设置  变分自编码器(VAE)模型  模型调配 模型设置   lora模型(原生)(插件) 模型调配 模型设置   AI生成prompt及模型分享 Stable Diffusion模型 pastel-mix+对应的VAE  Stable Diffusion模型国风+Lora模型 墨心+疏可走马 Stable Diffusion模型国风+Lo

    2024年02月04日
    浏览(58)
  • 变分自编码器生成新的手写数字图像

    变分自编码器(Variational Autoencoder,VAE) 是一种生成模型,通常用于学习数据的潜在表示,并用于生成新的数据样本。它由两部分组成:编码器和解码器。 编码器(Encoder) :接收输入数据,并将其映射到潜在空间中的分布。这意味着编码器将数据转换为均值和方差参数的分

    2024年04月11日
    浏览(42)
  • AIGC实战——使用变分自编码器生成面部图像

    在自编码器和变分自编码器上,我们都仅使用具有两个维度的潜空间。这有助于我们可视化自编码器和变分自编码器的内部工作原理,并理解自编码器和变分自编码潜空间分布的区别。在本节中,我们将使用更复杂的数据集,并了解增加潜空间的维度时,变

    2024年02月05日
    浏览(41)
  • AE(自动编码器)与VAE(变分自动编码器)的区别和联系?

    他们各自的概念看以下链接就可以了:https://blog.csdn.net/weixin_43135178/category_11543123.html  这里主要谈一下他们的区别? VAE是AE的升级版,VAE也可以被看作是一种特殊的AE AE主要用于数据的 压缩与还原 ,VAE主要用于 生成 。 AE是将数据映直接映射为数值 code(确定的数值) ,而

    2024年02月03日
    浏览(70)
  • 图像生成模型【自编码器、RNN、VAE、GAN、Diffusion、AIGC等】

    目录 监督学习 与 无监督学习 生成模型 自编码器 从线性维度压缩角度: 2D-1D 线性维度压缩: 3D-2D 推广线性维度压缩 流形 自编码器:流形数据的维度压缩 全图像空间 自然图像流形 自编码器的去噪效果 自编码器的问题 图像预测 (“结构化预测”) 显式密度模型 RNN PixelRNN [van

    2024年02月10日
    浏览(41)
  • 在 CelebA 数据集上训练的 PyTorch 中的基本变分自动编码器

    摩西·西珀博士         我最近发现自己需要一种方法将图像 编码到潜在嵌入中, 调整 嵌入,然后 生成 新图像。有一些强大的方法可以创建嵌入 或 从嵌入生成。如果你想同时做到这两点,一种自然且相当简单的方法是使用变分自动编码器。

    2024年02月05日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包