GPT模型训练实践(1)-基础概念

这篇具有很好参考价值的文章主要介绍了GPT模型训练实践(1)-基础概念。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

GPT模型训练实践(1)-基础概念

        GPT 是 Generative Pre-trained Transformers 的缩写,一种先进的深度学习模型,旨在生成类人文本。GPT 的三个组成部分Generative、Pre-trained 和 Transformer,其解释如下:

Generative生成:生成模型是用于生成新数据的统计模型。这些模型可以学习数据集中变量之间的关系,以生成与原始数据集中相似的新数据点。

Pre-trained预训练:这些模型已经使用大型数据集进行了预训练,可以在难以训练新模型时使用。尽管预训练模型可能并不完美,但它可以节省时间并提高性能。

Transformer-转换器(绰号变形金刚): Transformer 模型是 2017 年创建的人工神经网络,是最著名的能够处理文本等序列数据的深度学习模型。机器翻译和文本分类等许多任务都是使用 Transformer 模型执行的。

这些模型由 OpenAI 开发,已经经历了多次迭代:GPT-1、GPT-2、GPT-3 以及最近的 GPT-4。GPT-4在2023年3月发布,参数量已经上万亿。

        GPT-1 于 2018 年推出,是该系列中的第一个,使用独特的 Transformer 架构来大幅提高语言生成能力。它由 1.17 亿个参数构建,并在 Common Crawl 和 BookCorpus 的混合数据集上进行训练。GPT-1 可以在给定上下文的情况下生成流畅且连贯的语言。然而,它也有局限性,包括重复文本的倾向以及复杂对话和长期依赖性的困难。

        OpenAI 随后于 2019 年发布了 GPT-2。该模型规模更大,拥有 15 亿个参数,并在更大、更多样化的数据集上进行训练。它的主要优势是能够生成真实的文本序列和类似人类的响应。然而,GPT-2 在维持较长段落的上下文和连贯性方面遇到了困难。

        

        2020 年 GPT-3 的推出标志着一个巨大的飞跃。GPT-3 拥有惊人的 1750 亿个参数,在海量数据集上进行了训练,可以在各种任务中生成细致入微的响应。它可以生成文本、编写代码、创作艺术等等,使其成为聊天机器人和语言翻译等许多应用程序的宝贵工具。然而,GPT-3 并不完美,并且存在一定的偏见和不准确之处。

        继GPT-3之后,OpenAI推出了升级版本GPT-3.5,并最终于2023年3月发布了GPT-4。GPT-4是OpenAI最新、最先进的多模态语言模型。它可以生成更准确的语句并处理图像作为输入,从而可以进行说明、分类和分析。GPT-4 还展示了创作能力,例如创作歌曲或编写剧本。它有两种变体,其上下文窗口大小不同:gpt-4-8K 和 gpt-4-32K。

GPT模型训练实践(1)-基础概念

        GPT-4 能够理解复杂的提示并在各种任务中展示类似人类的表现,这是一个重大的飞跃。然而,与所有强大的工具一样,人们对潜在的滥用和道德影响存在合理的担忧。在探索 GPT 模型的功能和应用时,牢记这些因素至关重要。

GPT中,Transformer至关重要,下图为Transformer的发展过程。

GPT模型训练实践(1)-基础概念

本文参考:

1、合集·GPT模型详细解释

2、HOW TO BUILD A GPT MODEL?

3、What Is a Transformer Model?

4、封面:Premium AI Image | A woman with a blue face and a futuristic look Artificial intelligence Ai High Tech Chat GPT 

尤其感谢B站UP主三明2046,其作品《合集GPT模型详细解释》生动精彩,本系列文章充分吸收学习了该课程,并且在文章图片素材多有引用;How to build a GPT model

本文代码部分主要引用How to build a GPT model

如有侵权,请联系笔者删除,感谢,致敬!文章来源地址https://www.toymoban.com/news/detail-513775.html

到了这里,关于GPT模型训练实践(1)-基础概念的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深入理解深度学习——GPT(Generative Pre-Trained Transformer):GPT-2与Zero-shot Learning

    分类目录:《深入理解深度学习》总目录 相关文章: · GPT(Generative Pre-Trained Transformer):基础知识 · GPT(Generative Pre-Trained Transformer):在不同任务中使用GPT · GPT(Generative Pre-Trained Transformer):GPT-2与Zero-shot Learning · GPT(Generative Pre-Trained Transformer):GPT-3与Few-shot Learning

    2024年02月10日
    浏览(44)
  • 深入理解深度学习——GPT(Generative Pre-Trained Transformer):GPT-3与Few-shot Learning

    分类目录:《深入理解深度学习》总目录 相关文章: · GPT(Generative Pre-Trained Transformer):基础知识 · GPT(Generative Pre-Trained Transformer):在不同任务中使用GPT · GPT(Generative Pre-Trained Transformer):GPT-2与Zero-shot Learning · GPT(Generative Pre-Trained Transformer):GPT-3与Few-shot Learning

    2024年02月10日
    浏览(43)
  • GPT模型训练实践(3)-参数训练和代码实践

            GPT模型参数的训练过程宏观上有两个大环节,先从上往下进行推理,再从下往上进行训练,具体过程为: 1、模型初始化参数随机取得; 2、计算模型输出与真实数据的差距(损失值和梯度) 3、根据损失值,反向逐层调整权重参数; 如下图:  参数的生命周期分

    2024年02月12日
    浏览(37)
  • GPT模型训练实践

             GPT 是 Generative Pre-trained Transformers 的缩写,一种先进的深度学习模型,旨在生成类人文本。 GPT 的三个组成部分Generative、Pre-trained 和 Transformer,其解释如下: Generative 生成: 生成模型是用于生成新数据的统计模型。这些模型可以学习数据集中变量之间的关系,以

    2024年02月11日
    浏览(50)
  • GPT模型训练实践(2)-Transformer模型工作机制

            Transformer 的结构如下,主要由 编码器-解码器 组成,因为其不需要大量标注数据训练和天然支持并行计算的接口,正在全面取代CNN和RNN: 扩展阅读:What Is a Transformer Model? ​ ​ 其中 编码器中包含自注意力层和前馈神经网络层; 解码器包含自注意力层、编码器-解

    2024年02月12日
    浏览(44)
  • 零基础手把手训练实践-图像分类模型-基于达摩院modelscope

    -基于达摩院modelscope 导读:图像分类模型是最简单的,也是最基础的计算机视觉任务,应用非常广泛。本文将手把手介绍零基础训练图像分类模型的实践过程。文章主要介绍如何在标注好的数据集基础上,进行微调,使模型能够在新的数据上重新适配一个新的分类任务。 阅读

    2024年02月13日
    浏览(35)
  • Generative AI 新世界 | 扩散模型原理的代码实践之采样篇

    本期文章,我们一起来探究生成式 AI 这一火热的新知识领域。 目前计划有三个大方向: 代码深度实践方向。例如用代码完整诠释 Diffusion 模型的工作原理,或者 Transformer 的完整架构等; 模型部署和训练优化方向。例如尝试解读 LMI、DeepSpeed、Accelerate、FlashAttention 等不同模型

    2024年04月10日
    浏览(44)
  • GPT 大模型的应用路线图:可控性是最强路标 | The Roadmap of Generative AI

        目录 生成式AI的应用路线图:可控性是最强路标 | The Roadmap of Generative AI 

    2024年02月09日
    浏览(41)
  • 650亿参数,训练飙升38%!LLaMA基础大模型复刻最佳实践开源,GitHub已获30k星

    开源LLaMA神话再次复现!首个开源650亿参数大模型高性能预训练方案,训练加速38%,低成本打造量身大模型。 「百模大战」正风起云涌,AIGC相关企业融资和并购金额也屡创新高,全球科技企业争相入局。 然而,AI大模型风光无限的背后是成本极其高昂,单次预训练成本或高达

    2024年02月16日
    浏览(44)
  • Amazon Generative AI 新世界 | 基于 Amazon 扩散模型原理的代码实践之采样篇

    以前通过论文介绍 Amazon 生成式 AI 和大语言模型(LLMs)的主要原理之外,在代码实践环节主要还是局限于是引入预训练模型、在预训练模型基础上做微调、使用 API 等等。很多开发人员觉得还不过瘾,希望内容可以更加深入。因此,本文将讲解基于扩散模型原理的代码实践,

    2024年02月06日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包