深入浅出TensorFlow2函数——tf.constant

这篇具有很好参考价值的文章主要介绍了深入浅出TensorFlow2函数——tf.constant。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分类目录:《深入浅出TensorFlow2函数》总目录
相关文章:
· 深入浅出TensorFlow2函数——tf.constant
· 深入浅出TensorFlow2函数——tf.Tensor
· 深入浅出Pytorch函数——torch.tensor
· 深入浅出Pytorch函数——torch.as_tensor
· 深入浅出PaddlePaddle函数——paddle.to_tensor


语法
tf.constant(
    value, dtype=None, shape=None, name='Const'
)
参数
  • value:输出张量的常数值。
  • dtype:输出张量元素的类型。
  • shape:[可选] 张量的形状。
  • name:[可选] 张量的名称。
返回值

一个常数张量。文章来源地址https://www.toymoban.com/news/detail-514354.html

实例
# Constant 1-D Tensor from a python list.
tf.constant([1, 2, 3, 4, 5, 6])
<tf.Tensor: shape=(6,), dtype=int32,
    numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
# Or a numpy array
a = np.array([[1, 2, 3], [4, 5, 6]])
tf.constant(a)
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
  array([[1, 2, 3],
         [4, 5, 6]])>
函数实现
@tf_export("constant", v1=[])
def constant(value, dtype=None, shape=None, name="Const"):
  """Creates a constant tensor from a tensor-like object.
  Note: All eager `tf.Tensor` values are immutable (in contrast to
  `tf.Variable`). There is nothing especially _constant_ about the value
  returned from `tf.constant`. This function is not fundamentally different from
  `tf.convert_to_tensor`. The name `tf.constant` comes from the `value` being
  embedded in a `Const` node in the `tf.Graph`. `tf.constant` is useful
  for asserting that the value can be embedded that way.
  If the argument `dtype` is not specified, then the type is inferred from
  the type of `value`.
  >>> # Constant 1-D Tensor from a python list.
  >>> tf.constant([1, 2, 3, 4, 5, 6])
  <tf.Tensor: shape=(6,), dtype=int32,
      numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
  >>> # Or a numpy array
  >>> a = np.array([[1, 2, 3], [4, 5, 6]])
  >>> tf.constant(a)
  <tf.Tensor: shape=(2, 3), dtype=int64, numpy=
    array([[1, 2, 3],
           [4, 5, 6]])>
  If `dtype` is specified, the resulting tensor values are cast to the requested
  `dtype`.
  >>> tf.constant([1, 2, 3, 4, 5, 6], dtype=tf.float64)
  <tf.Tensor: shape=(6,), dtype=float64,
      numpy=array([1., 2., 3., 4., 5., 6.])>
  If `shape` is set, the `value` is reshaped to match. Scalars are expanded to
  fill the `shape`:
  >>> tf.constant(0, shape=(2, 3))
    <tf.Tensor: shape=(2, 3), dtype=int32, numpy=
    array([[0, 0, 0],
           [0, 0, 0]], dtype=int32)>
  >>> tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
  <tf.Tensor: shape=(2, 3), dtype=int32, numpy=
    array([[1, 2, 3],
           [4, 5, 6]], dtype=int32)>
  `tf.constant` has no effect if an eager Tensor is passed as the `value`, it
  even transmits gradients:
  >>> v = tf.Variable([0.0])
  >>> with tf.GradientTape() as g:
  ...     loss = tf.constant(v + v)
  >>> g.gradient(loss, v).numpy()
  array([2.], dtype=float32)
  But, since `tf.constant` embeds the value in the `tf.Graph` this fails for
  symbolic tensors:
  >>> with tf.compat.v1.Graph().as_default():
  ...   i = tf.compat.v1.placeholder(shape=[None, None], dtype=tf.float32)
  ...   t = tf.constant(i)
  Traceback (most recent call last):
  ...
  TypeError: ...
  `tf.constant` will create tensors on the current device. Inputs which are
  already tensors maintain their placements unchanged.
  Related Ops:
  * `tf.convert_to_tensor` is similar but:
    * It has no `shape` argument.
    * Symbolic tensors are allowed to pass through.
    >>> with tf.compat.v1.Graph().as_default():
    ...   i = tf.compat.v1.placeholder(shape=[None, None], dtype=tf.float32)
    ...   t = tf.convert_to_tensor(i)
  * `tf.fill`: differs in a few ways:
    *   `tf.constant` supports arbitrary constants, not just uniform scalar
        Tensors like `tf.fill`.
    *   `tf.fill` creates an Op in the graph that is expanded at runtime, so it
        can efficiently represent large tensors.
    *   Since `tf.fill` does not embed the value, it can produce dynamically
        sized outputs.
  Args:
    value: A constant value (or list) of output type `dtype`.
    dtype: The type of the elements of the resulting tensor.
    shape: Optional dimensions of resulting tensor.
    name: Optional name for the tensor.
  Returns:
    A Constant Tensor.
  Raises:
    TypeError: if shape is incorrectly specified or unsupported.
    ValueError: if called on a symbolic tensor.
  """
  return _constant_impl(value, dtype, shape, name, verify_shape=False,
                        allow_broadcast=True)

到了这里,关于深入浅出TensorFlow2函数——tf.constant的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深入浅出TensorFlow2函数——tf.exp

    分类目录:《深入浅出TensorFlow2函数》总目录 相关文章: · 深入浅出TensorFlow2函数——tf.exp · 深入浅出TensorFlow2函数——tf.math.exp · 深入浅出Pytorch函数——torch.exp · 深入浅出PaddlePaddle函数——paddle.exp 按元素计算 x x x 的指数 y = e x y=e^x y = e x 。 语法 参数 x :[ tf.Tensor ] 必须

    2024年02月12日
    浏览(33)
  • 深入浅出TensorFlow2函数——tf.random.poisson

    分类目录:《深入浅出TensorFlow2函数》总目录 绘制 shape 个来自每个给定泊松分布的样本。 语法 参数 shape :输出张量的形状,为一个一维整数张量或Python数组。 lam :样本提供描述泊松分布的参数。 dtype :输出的浮点类型: float16 、 bfloat16 、 float32 、 float64 ,默认为 float3

    2024年02月11日
    浏览(46)
  • 深入浅出TensorFlow2函数——tf.random.normal

    分类目录:《深入浅出TensorFlow2函数》总目录 语法 参数 shape :输出张量的形状,为一个一维整数张量或Python数组。 mean 正态分布的平均值。类型为张量或 dtype ,可与 stddev 一起广播。 stddev :正态分布的标准偏差。类型为张量或 dtype ,可与 mean 一起广播。 dtype :输出的浮点

    2024年02月12日
    浏览(34)
  • 深入浅出TensorFlow2函数——tf.math.exp

    分类目录:《深入浅出TensorFlow2函数》总目录 相关文章: · 深入浅出TensorFlow2函数——tf.exp · 深入浅出TensorFlow2函数——tf.math.exp · 深入浅出Pytorch函数——torch.exp · 深入浅出PaddlePaddle函数——paddle.exp 按元素计算 x x x 的指数 y = e x y=e^x y = e x 。 语法 参数 x :[ tf.Tensor ] 必须

    2024年02月12日
    浏览(39)
  • 深入浅出TensorFlow2函数——tf.random.uniform

    分类目录:《深入浅出TensorFlow2函数》总目录 绘制 shape 个来自每个给定均匀分布的样本。 语法 参数 shape :输出张量的形状,为一个一维整数张量或Python数组。 minval :要生成的随机值范围的下限(含),默认值为 0 。 minval :要生成的随机值范围的上限(不含),默认值为 1 。

    2024年02月11日
    浏览(34)
  • 深入浅出TensorFlow2函数——tf.reduce_sum

    分类目录:《深入浅出TensorFlow2函数》总目录 相关文章: · 深入浅出TensorFlow2函数——tf.reduce_sum · 深入浅出TensorFlow2函数——tf.math.reduce_sum · 深入浅出Pytorch函数——torch.sum · 深入浅出PaddlePaddle函数——paddle.sum 计算张量各维度上元素的总和。 语法 参数 input_tensor :[ Tensor

    2024年02月10日
    浏览(57)
  • 深入浅出TensorFlow2函数——tf.math.reduce_sum

    分类目录:《深入浅出TensorFlow2函数》总目录 相关文章: · 深入浅出TensorFlow2函数——tf.reduce_sum · 深入浅出TensorFlow2函数——tf.math.reduce_sum · 深入浅出Pytorch函数——torch.sum · 深入浅出PaddlePaddle函数——paddle.sum 计算张量各维度上元素的总和。 语法 参数 input_tensor :[ Tensor

    2024年02月12日
    浏览(32)
  • 深入浅出TensorFlow2函数——tf.data.Dataset.from_tensor_slices

    分类目录:《深入浅出TensorFlow2函数》总目录 返回一个数据集,其元素是给定张量的切片。给定的张量沿着它们的第一维度进行切片。此操作保留输入张量的结构,删除每个张量的第一个维度并将其用作数据集维度。所有输入张量在其第一维度上必须具有相同的大小。 语法

    2024年02月12日
    浏览(45)
  • 深入浅出Pytorch函数——torch.nn.init.constant_

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.nn.init.calculate_gain · 深入浅出Pytorch函数——torch.nn.init.uniform_ · 深入浅出Pytorch函数——torch.nn.init.normal_ · 深入浅出Pytorch函数——torch.nn.init.constant_ · 深入浅出Pytorch函数——torch.nn.init.ones_ ·

    2024年02月12日
    浏览(42)
  • 深入浅出C语言—【函数】下

    函数和函数之间可以根据实际的需求进行组合的,也就是互相调用的。 注意: 函数可以嵌套调用,但是不能嵌套定义。 把一个函数的返回值作为另外一个函数的参数。 上面的strlen函数是求数组长度的库函数, 特别注意的是,当数组为字符数组时,数组的末尾会自动放一个

    2024年02月17日
    浏览(82)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包