Python实现图片二值化

这篇具有很好参考价值的文章主要介绍了Python实现图片二值化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 什么是二值化

图像二值化就是将图像上的像素点的“灰度值”设置为[0, 0, 0]或[255, 255, 255],即要么纯黑,要么纯白。

2. 二值化的作用

通过二值化,能更好地分析物体的形状和轮廓。

3. 二值化的实现

二值化的实现一般有: 全局阈值法、自适应阈值法、OTSU二值化等
(1)全局阈值法
就是选定一个全局阈值,大于这个值的色素点就赋值为255;反之为0。
(2)自适应阈值法
全局阈值法相对比较简单粗暴。自适应阈值法的原理就是将像素点与该点所在区域的像素的平均值做比较,大于则赋予255;反之,为0.
(3)OTSU二值化
不太明白,后续遇到后再进行补充。

4.代码实现

# ---------------------------
# @Time     : 2022/5/2 22:37
# @Author   : lcq
# @File     : two_.py
# @Function : 图像二值化
# ---------------------------

import cv2
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
matplotlib.rcParams['font.sans-serif'] = ['SimHei']     # 显示中文
# 为了坐标轴负号正常显示。matplotlib默认不支持中文,设置中文字体后,负号会显示异常。需要手动将坐标轴负号设为False才能正常显示负号。
matplotlib.rcParams['axes.unicode_minus'] = False


# 读取灰度图像
img = cv2.imread("C:\\Users\\17631\\Desktop\\test.jpeg", 0)
print("原图的shape: ", img.shape)
plt.subplot(2, 2, 1)
plt.imshow(img, cmap='gray')
plt.title("原图")


# 1.全局阈值法
ret, mask_all = cv2.threshold(src=img,                  # 要二值化的图片
                              thresh=127,               # 全局阈值
                              maxval=255,               # 大于全局阈值后设定的值
                              type=cv2.THRESH_BINARY)   # 设定的二值化类型,THRESH_BINARY:表示小于阈值置0,大于阈值置填充色
print("全局阈值的shape: ", mask_all.shape)
plt.subplot(2, 2, 2)
plt.imshow(mask_all, cmap='gray')
plt.title("全局阈值")

# 2.自适应阈值法
mask_local = cv2.adaptiveThreshold(src=img,                                     # 要进行处理的图片
                                   maxValue=255,                                # 大于阈值后设定的值
                                   adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C,   # 自适应方法,ADAPTIVE_THRESH_MEAN_C:表区域内均值;ADAPTIVE_THRESH_GAUSSIAN_C:表区域内像素点加权求和
                                   thresholdType=cv2.THRESH_BINARY,             # 同全局阈值法中的参数一样
                                   blockSize=11,                                # 方阵(区域)大小,
                                   C=1)                                         # 常数项,每个区域计算出的阈值的基础上在减去这个常数作为这个区域的最终阈值,可以为负数
print("局部阈值的shape: ", mask_local.shape)
plt.subplot(2, 2, 3)
plt.imshow(mask_local, cmap='gray')
plt.title("局部阈值")

# 3.OTSU二值化
ret2, mask_OTSU = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
print("OTSU的shape: ", mask_OTSU.shape)
plt.subplot(2, 2, 4)
plt.imshow(mask_OTSU, cmap='gray')
plt.title("OTSU")

plt.show()

效果:
Python实现图片二值化
打印的维度:

原图的shape:  (2338, 1080)
全局阈值的shape:  (2338, 1080)
局部阈值的shape:  (2338, 1080)
OTSU的shape:  (2338, 1080)

注:

本文的代码实现有参考这一篇文章,这篇文章写得非常好,各位可查看:添加链接描述文章来源地址https://www.toymoban.com/news/detail-514950.html

到了这里,关于Python实现图片二值化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenCV-Python学习(10)—— OpenCV 图像二值化处理(cv.threshold)

    1. 学习目标 理解图像的分类,不同类型的图像的区别; 对图像进行二值化处理,对【 cv.threshold 】函数的理解。 2. 图像分类 2.1 不同类型图像说明 按照颜色对图像进行分类,可以分为二值图像、灰度图像和彩色图像。 二值图像: 只有黑色和白色两种颜色的图像。 每个像素

    2024年02月03日
    浏览(69)
  • 【GEE笔记】最大类间方差法(otsu、大津法)算法实现——计算阈值、图像二值化分割

    1、最大类间方差法原理概述 2、GEE频率分布统计,直方图绘制 3、算法具体实现,以GEE JavaScript版本为例 4、目标像元提取,以遥感影像提取水体为示例 最大类间方差法(又名otsu、大津法)是由日本学者OTSU于1979年提出的一种对图像进行二值化的高效算法。算法假定该图像根据

    2024年02月06日
    浏览(57)
  • opencv图片灰度二值化

    2024年02月13日
    浏览(42)
  • 图像二值化(一)

      继《图像灰度处理》后,我们继续讨论图像处理的其他基本操作——图像二值化处理。   图像二值化是将像素点的灰度值设为0或255,使图像呈现明显的黑白效果。二值化之前需要把图像进行灰度处理。图像选用的是最近很火的ChatGPT标志。   Threshold为全局阈值,但是

    2024年02月07日
    浏览(36)
  • 图像二值化算法

    图像二值化( Image Binarization)就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。二值图像每个像素只有两种取值:要么纯黑,要么纯白。进行二值化有多种方式,其中最常用的就是采用阈值法(Thresholding)进行二值化。 根据阈值

    2024年02月06日
    浏览(48)
  • 图像二值化

    图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。图像的二值化使图像中数据量大为减少,从而能凸显出目标的轮廓。 要得到二值化图像,首先要把图像灰度化,然后将256个亮度等级的灰度图像通过适当的阈值选取而

    2024年02月05日
    浏览(63)
  • 基于FPGA的图像自适应阈值二值化算法实现,包括tb测试文件和MATLAB辅助验证

    目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1Otsu方法 4.2 Adaptive Thresholding方法 4.3、FPGA实现过程 5.算法完整程序工程 Vivado2019.2 matlab2022a        图像二值化是数字图像处理中的一种常见技术,可以将灰度图像转换为黑白二值图像,突出图像

    2024年02月08日
    浏览(44)
  • OpenCV(八):图像二值化

    目录 1.固定值二值化 2.自适应阈值二值化 3.Android JNI完整代码 1.固定值二值化 固定阈值二值化是OpenCV中一种简单而常用的图像处理技术,用于将图像转换为二值图像。在固定阈值二值化中,像素值根据一个预定义的阈值进行分类,大于阈值的像素被设置为白色,而小于或等于

    2024年02月10日
    浏览(49)
  • 图像像素操作与二值化

    目录 1、图像像素比较 1.1 比较函数  1.2 图像最大值最小值寻找 2、图像像素逻辑操作 3、图像二值化 3.1 固定阈值二值化 3.2 自适应阈值二值化 1.1 比较函数  1.2 图像最大值最小值寻找         3.1 固定阈值二值化     3.2 自适应阈值二值化  

    2024年02月12日
    浏览(35)
  • opencv(20) 图像阈值(二值化)

    二值化核心思想,设阈值,大于阈值的为0(黑色)或 255(白色),使图像称为黑白图。 阈值可固定,也可以自适应阈值。 自适应阈值一般为一点像素与这点为中序的区域像素平均值或者高斯分布加权和的比较,其中可以设置一个差值也可以不设置。 图像的阈值化旨在提取

    2024年02月02日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包