机器学习8:特征组合-Feature Crosses

这篇具有很好参考价值的文章主要介绍了机器学习8:特征组合-Feature Crosses。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

        特征组合也称特征交叉(Feature Crosses),即不同类型或者不同维度特征之间的交叉组合,其主要目的是提高对复杂关系的拟合能力。在特征工程中,通常会把一阶离散特征两两组合,构成高阶组合特征。可以进行组合的特征包括离散特征和连续特征,但是连续特征需要进行一定的处理后才可以进行特征组合。
        为了便于理解,可以将特征组合理解为两个离散特征交叉合并,举个例子:特征 A 有 m 个类别,特征 B 有 n 个类别,则特征 A 和特征 B 的组合就是将特征 A、B 中的各个类别两两组合,其维度为 m*n。很明显,特征组合存在隐患——当一个特征的类别非常多的时候会出现组合特征向量维度极高的情况,这个时候还需要用到降维处理。

目录

1.为什么要进行特征组合?

2.特征交叉的种类文章来源地址https://www.toymoban.com/news/detail-515783.html

到了这里,关于机器学习8:特征组合-Feature Crosses的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Elasticsearch:聊天机器人、人工智能和人力资源:电信公司和企业组织的成功组合

    作者:来自 Elastic Jürgen Obermann, Piotr Kobziakowski 让我们来谈谈大型企业人力资源领域中一些很酷且改变游戏规则的东西:生成式 AI 和 Elastic Stack 的绝佳组合。 现在,想象一下大型电信公司的典型人力资源部门 — 他们正在处理一百万件事情,对吗? 从回答无休止的员工查询到

    2024年01月24日
    浏览(68)
  • 机器学习9:使用 TensorFlow 进行特征组合编程实践

    在【机器学习6】这篇文章中,笔者已经介绍过环境准备相关事项,本文对此不再赘述。本文将通过编程案例来探索特征组合(Feature Crosses)对模型训练的影响,加深对上一篇文章(机器学习8)的理解。 经度和纬度可以作为独立特征训练模型以预测当地房价。同时,我们也可

    2024年02月11日
    浏览(40)
  • 机器学习中高维组合特征的处理方法+推荐系统使用矩阵分解为用户推荐的原理解析,《百面机器学习》学习笔记

    为了提高复杂关系的拟合能力,在特征工程中经常会把一阶离散特征进行组合,构成高阶组合特征。 假设有A B两组特征,C为受到A B两种特征影响的因素,且对特征A来说,其有 A i , i ∈ [ 0 , 1 ] {A^i,iin [0,1]} A i , i ∈ [ 0 , 1 ] 两种特征取值。同时,对于特征B来说,其有 B j , j ∈

    2024年02月05日
    浏览(47)
  • 机器学习入门教学——人工智能、机器学习、深度学习

    1、人工智能 人工智能相当于人类的代理人,我们现在所接触到的人工智能基本上都是弱AI,主要作用是正确解释从外部获得的数据,并对这些数据加以学习和利用,以便灵活的实现特定目标和任务。 例如: 阿尔法狗、智能汽车 简单来说: 人工智能使机器像人类一样进行感

    2024年02月09日
    浏览(91)
  • 人工智能|机器学习——基于机器学习的舌苔检测

    基于深度学习的舌苔检测毕设留档.zip资源-CSDN文库 目前随着人们生活水平的不断提高,对于中医主张的理念越来越认可,对中医的需求也越来越多。在诊断中,中医通过观察人的舌头的舌质、苔质等舌象特征,了解人体内的体质信息从而对症下药。 传统中医的舌诊主要依赖

    2024年02月22日
    浏览(70)
  • 人工智能与机器人|机器学习

    原文链接: https://mp.weixin.qq.com/s/PB_n8woxdsWPtrmL8BbehA 机器学习下包含神经网络、深度学习等,他们之间的关系表示如图2-7所示。 图2-7 关系图 那么什么是机器学习、深度学习、他们的区别又是什么呢? 2.7.1 什么是机器学习? 机器学习是 人工智能 (AI) 和计算机科学的一个分支,

    2024年02月06日
    浏览(79)
  • 【大厂AI课学习笔记】【2.1 人工智能项目开发规划与目标】(7)特征工程的基本方法

    今天来学习特征工程的基本方法。 基本方法包括:特征选择(Feature Selection)、特征提取(Feature Extraction)和特征构建(Feature Construction)。 从给定的特征集合中选出相关特征子集的过程。 去除无关特征,降低特征学习难度,让模型简单,降低计算复杂度。 抛弃这部分特征

    2024年02月22日
    浏览(48)
  • 【机器学习】人工智能概述

    🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 1.人工智能概述 1.1 机器学习、人工智能与深度学习 1.2 机器学习、深度学习能做些什么

    2024年02月09日
    浏览(55)
  • 机器学习--人工智能概述

    入门人工智能,了解人工智能是什么。为啥发展起来,用途是什么,是最重要也是最关键的事情。大致有以下思路。 人工智能发展历程 机器学习定义以及应用场景 监督学习,无监督学习 监督学习中的分类、回归特点 知道机器学习的开发流程 人工智能在现实生活中的应用

    2024年01月19日
    浏览(60)
  • 人工智能与机器学习

    欢迎关注博主 Mindtechnist 或加入【Linux C/C++/Python社区】一起探讨和分享Linux C/C++/Python/Shell编程、机器人技术、机器学习、机器视觉、嵌入式AI相关领域的知识和技术。 专栏:《机器学习》 ​ ​ ☞什么是人工智能、机器学习、深度学习 人工智能这个概念诞生于1956年的达特茅斯

    2024年02月02日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包