【数据挖掘】——常见算法对比和选择

这篇具有很好参考价值的文章主要介绍了【数据挖掘】——常见算法对比和选择。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【数据挖掘】——常见算法对比和选择,数据挖掘,算法,数据挖掘,机器学习

🤵‍♂️ 个人主页:@Lingxw_w的个人主页
✍🏻作者简介:计算机科学与技术研究生在读 🐋 希望大家多多支持,我们一起进步!
😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+文章来源地址https://www.toymoban.com/news/detail-515810.html

常见数据挖掘算法分析

  • 概述
    • 一般认为,数据挖掘领域所使用的方法均属于机器学习算法、深度学习算法和数据挖掘算法
    • 一般认为,数据挖掘领域的问题主要有分类、回归、聚类、推荐、图像识别、预测
    • 一般认为,数据挖掘领域所牵扯到的底层知识有**“概率论”、“数论”、“统计学”、“线性代数”、“数字图像处理”、“机器学习理论基础”、“高等数学”**。当然,你也不一定很清楚原理,事实上很多数据挖掘师会用算法,但未必解释的清楚自己用的算法。
  • 挖掘思路
    • 一般来说,当我们遇到一个问题,完成了数据探索和数据预处理(其实你就已经完成了70%的工作),接下来的任务就是挖掘建模。
    • 通常明确问题类型之后,我们首先选择普遍认同的算法,如SVM(支持向量机)、GBDT(梯度提升树)、Adaboost(这个玩机器学习的都知道是什么)等

到了这里,关于【数据挖掘】——常见算法对比和选择的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据挖掘与机器学习

    1. 有监督的机器学习 :         分类 :                  KNN 最近邻                  逻辑回归 - 朴素贝叶斯估计                  SVM 线性 或 非线性 优化模型                  决策树模型 - 随机森林 - 其它集成模型                  lig

    2024年04月29日
    浏览(91)
  • 【python】数据挖掘分析清洗——特征选择(特征筛选)方法汇总

    本文链接:https://blog.csdn.net/weixin_47058355/article/details/130400400?spm=1001.2014.3001.5501 数据挖掘系列: 缺失值处理方法汇总 离散化方法汇总 离群点(异常值)处理方法汇总 标准化(数据归一化)处理方法汇总 特征选择(特征筛选)方法汇总 特征选择筛选(降维)方法汇总 分类预测方法汇

    2024年02月15日
    浏览(51)
  • Python数据挖掘与机器学习

    近年来,Python编程语言受到越来越多科研人员的喜爱,在多个编程语言排行榜中持续夺冠。同时,伴随着深度学习的快速发展,人工智能技术在各个领域中的应用越来越广泛。机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实

    2024年02月11日
    浏览(52)
  • 【数据挖掘算法与应用】——数据挖掘导论

    数据挖掘技术背景 大数据如何改变我们的生活 1.数据爆炸但知识贫乏   人们积累的数据越来越多。但是,目前这些数据还仅仅应用在数据的录入、查询、统计等功能,无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势,导致了“数据爆炸但知识

    2023年04月09日
    浏览(58)
  • 机器学习——数据仓库与数据挖掘——期末复习(简答题)

    1 、试述真正例率(TPR)、假正例率(FPR)与查准率(P)、查全率(R)之间的联系。 查全率: 真实正例被预测为正例的比例 真正例率: 真实正例被预测为正例的比例 查全率与真正例率是相等的。 查准率:预测为正例的实例中真实正例的比例 假正例率: 真实反例被预测为正例的

    2024年02月10日
    浏览(56)
  • ElasticSearch的数据挖掘与机器学习

    ElasticSearch是一个开源的搜索和分析引擎,它基于Lucene库构建,具有高性能、易用性和扩展性。ElasticSearch可以用于实时搜索、数据分析和机器学习等应用场景。本文将涵盖ElasticSearch的数据挖掘与机器学习方面的核心概念、算法原理、最佳实践以及实际应用场景。 在ElasticSear

    2024年02月22日
    浏览(51)
  • 【Python】数据挖掘与机器学习(一)

    大家好 我是寸铁👊 总结了一篇【Python】数据挖掘与机器学习(一)sparkles: 喜欢的小伙伴可以点点关注 💝 问题描述 请从一份数据中预测鲍鱼的年龄,数据集在abalone.cvs中,数据集一共有4177 个样本,每个样本有9个特征。其中rings为鲍鱼环数,鲍鱼每一年长一环,类似树轮,是

    2024年04月12日
    浏览(48)
  • Python 数据挖掘与机器学习教程

    详情点击链接:Python 数据挖掘与机器学习 一: Python编程 Python编程入门 1、Python环境搭建( 下载、安装与版本选择)。 2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…) 3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调

    2024年02月16日
    浏览(50)
  • 关联规则挖掘(上):数据分析 | 数据挖掘 | 十大算法之一

    ⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者: 秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。 🐴欢迎小伙伴们 点赞👍🏻、收藏

    2024年02月07日
    浏览(52)
  • 数据挖掘18大算法实现以及其他相关经典DM算法:决策分类,聚类,链接挖掘,关联挖掘,模式挖掘、图算法,搜索算法等

    【机器学习入门与实践】入门必看系列,含数据挖掘项目实战:模型融合、特征优化、特征降维、探索性分析等,实战带你掌握机器学习数据挖掘 专栏详细介绍:【机器学习入门与实践】合集入门必看系列,含数据挖掘项目实战:数据融合、特征优化、特征降维、探索性分析

    2024年02月09日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包