机器学习15:神经网络-Neural Networks

这篇具有很好参考价值的文章主要介绍了机器学习15:神经网络-Neural Networks。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

神经网络是特征交叉的更复杂版本。本质上,神经网络会学习适当的特征组合。本文主要介绍神经网络的结构、隐藏层、激活函数等内容。

目录

1.神经网络:结构

2.隐藏层

3.激活函数

3.1 常用激活函数

3.2 小结

4.文章来源地址https://www.toymoban.com/news/detail-517265.html

到了这里,关于机器学习15:神经网络-Neural Networks的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 递归神经网络(Recursive Neural Networks)

    递归神经网络(Recursive Neural Networks)是一种特殊的神经网络,它们通过处理具有树形结构的数据来捕获数据的深层次关系,尤其是在自然语言处理和计算机视觉中的一些应用,如语法分析和场景理解。 1. 理解基本概念和背景 区别于循环神经网络 :首先,清楚递归神经网络(

    2024年04月13日
    浏览(33)
  • 物理信息神经网络PINNs : Physics Informed Neural Networks 详解

    本博客主要分为两部分: 1、PINN模型论文解读 2、PINN模型相关总结 基于物理信息的神经网络(Physics-informed Neural Network, 简称PINN),是一类用于解决有监督学习任务的神经网络,同时尊重由一般非线性偏微分方程描述的任何给定的物理规律。 原理 :它不仅能够像传统神经网

    2024年02月02日
    浏览(48)
  • 【论文导读】- Federated Graph Neural Networks: Overview, Techniques and Challenges(联邦图神经网络:概述、技术和挑战)

    论文地址:https://arxiv.org/abs/2202.07256 With its powerful capability to deal with graph data widely found in practical applications, graph neural networks (GNNs) have received significant research attention. However, as societies become in-creasingly concerned with data privacy, GNNs face the need to adapt to this new normal. This has led to the rapi

    2023年04月16日
    浏览(44)
  • 图神经网络EEG论文阅读和分析:《EEG-Based Emotion Recognition Using Regularized Graph Neural Networks》

    下面所有博客是个人对EEG脑电的探索,项目代码是早期版本不完整,需要完整项目代码和资料请私聊。 数据集 1、脑电项目探索和实现(EEG) (上):研究数据集选取和介绍SEED 相关论文阅读分析: 1、EEG-SEED数据集作者的—基线论文阅读和分析 2、图神经网络EEG论文阅读和分析:《

    2024年02月09日
    浏览(42)
  • 高级分布式系统-第15讲 分布式机器学习--神经网络理论

    高级分布式系统汇总:高级分布式系统目录汇总-CSDN博客 模糊控制在处理数值数据、自学习能力等方面还远没有达到人脑的境界。人工神经网络从另一个角度出发,即从人脑的生理学和心理学着手,通过人工模拟人脑的工作机理来实现机器的部分智能行为。 人工神经网络(简

    2024年01月19日
    浏览(43)
  • 深度学习4. 循环神经网络 – Recurrent Neural Network | RNN

    目录 循环神经网络 – Recurrent Neural Network | RNN 为什么需要 RNN ?独特价值是什么? RNN 的基本原理 RNN 的优化算法 RNN 到 LSTM – 长短期记忆网络 从 LSTM 到 GRU RNN 的应用和使用场景 总结 百度百科+维基百科 卷积神经网络和普通的算法大部分都是输入和输出的一一对应,也就是一

    2024年02月11日
    浏览(41)
  • 【深度学习笔记】6_2 循环神经网络RNN(recurrent neural network)

    注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图 上一节介绍的 n n n 元语法中,时间步 t t t 的词 w t w_t w t ​ 基于前面所有词的条件概率只考虑了最近时间步的 n − 1 n-1 n − 1 个词。如果要考虑比 t − ( n − 1 ) t-(n-1) t −

    2024年03月12日
    浏览(64)
  • 深度学习入门——深度卷积神经网络模型(Deep Convolution Neural Network,DCNN)概述

    机器学习是实现人工智能的方法和手段,其专门研究计算机如何模拟或实现人类的学习行为,以获取新的知识和技能,重新组织已有的知识结构使之不断改善自身性能的方法。计算机视觉技术作为人工智能的一个研究方向,其随着机器学习的发展而进步,尤其近10年来,以深

    2024年02月13日
    浏览(42)
  • 深度学习神经网络学习笔记-多模态方向-11-Deep Voice: Real-time Neural Text-to-Speech

    本文提出Deep Voice,一种完全由深度神经网络构建的生产质量文本到语音系统。Deep Voice为真正的端到端神经语音合成奠定了基础。该系统由五个主要的构建模块组成:用于定位音素边界的分割模型、字素到音素的转换模型、音素时长预测模型、基频预测模型和音频合成模型。对

    2024年02月06日
    浏览(46)
  • 机器学习-有监督学习-神经网络

    向量版本 y = ⟨ w , x ⟩ + b y = langle w, x rangle + b y = ⟨ w , x ⟩ + b 懂得两者区别 激活函数,损失函数 感知机模型的本质是线性模型,再加上激活函数 训练数据、损失函数、梯度下降,小批量梯度下降 神经网络算法整体流程: 初始化网络 前向传播 计算损失 计算微分 梯度下

    2024年02月07日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包