1.简述
图像的线性变换和非线性变换,逐像素运算就是对图像的没一个像素点的亮度值,通过一定的函数关系,转换到新的亮度值。这个转换可以由函数表示:
s = f ( r ) s = f( r )s=f(r)
其中r为原来的像素值,s为新的像素值,通常采用的函数了单调函数进行变换。
线性变换:
s ( x , y ) = c + k r ( x , y ) s(x,y) =c+kr(x,y)
s(x,y)=c+kr(x,y)
其中c和k均为常数
非线性变换:
s = a + l n ( r + 1 ) b l n c s=a+\frac {ln(r+1)} {blnc}
s=a+
blnc
ln(r+1)
其中a,b,c为常数
Gamma变换:
s = c r γ s = cr^γ
s=cr
γ
其中c为常数,通常取1,γ也为常数,r的范围为[0,255],通常会放缩到[0,1]
图为γ取不同值时的情况,例如,当原图像的像素值为0.2时,γ=1.5时,现图像的像素值小于0.2,γ=1时,现图像的像素值等于0.2.当γ=0.5时,现图像的像素值大于0.4.
2.代码
clear all;
%%
C=double(imread('trees.tif')); %读入图片
h=[1,1,1;1,1,1;1,1,1]./9;
B=C(:,:,1);
%B=imfilter(B,h,'replicate');
S=size(B);H=S(1,1);W=S(1,2);
t=0.75;%0.730174;
h0 = (8*t*t*t-6*t*t+3*t)/(1+2*t)*(1/32);
h1 = (-16*t*t*t+20*t*t-12*t+3)/(1+2*t)*(1/32);
h2 = (2*t-3)/(1+2*t)*(1/8.);
h3 = (16*t*t*t-20*t*t+28*t+5)/(1+2*t)*(1/32.);
h4 = (-8*t*t*t+6*t*t+5*t+20)/(1+2*t)*(1/16.);
hL=[h0,h1,h2,h3,h4,h3,h2,h1,h0];
g0=-t/16;
g1=(1-2*t)/16;
g2=(t+4)/16;
g3=(3+2*t)/8;
hH=[-g0,g1,-g2,g3,-g2,g1,-g0];
%% 对淹没在噪声中的SAR图像首先用Wiener滤波法自适应去噪
%Idenoise= medfilt2(B(:,:,1),[3 3]);%中值滤波
%Idenoise = wiener2(B(:,:,1),[5 5]);%自适应滤波
%Idenoise=double(Idenoise);
Idenoise=B;
%% 用多分辨分解法提取高频边缘BI
hL=[1/16,1/4,3/8,1/4,1/16];
for i=1:length(hL)
for j=1:length(hL)
hL2D(i,j)=hL(i)*hL(j);
end
end
L0=imfilter(Idenoise,hL2D,'replicate');%低频近似图像L0
L0=double(L0);
L0max=max(max(L0));
c=0.3;s=2;
T1 = 0;
T2 = (1-c)*L0max;
k1=0.6; k2=s;
BI = Idenoise-L0;% 第一层高频边缘BI
%% 对BI作非线性插值后得到newBI
newBI=BI;
for i=1:H
for j=1:W
if abs(BI(i,j))<=T1
newBI(i,j)=k1*BI(i,j);
else if (abs(BI(i,j))>T1)&(abs(BI(i,j))<=T2)
newBI(i,j)=sign(BI(i,j))*(k2*abs(BI(i,j))+T1*(k1-k2));
end
end
end
end
%
%% 对newBI作高通滤波得到增强后的高频边缘BI
hH=[-1/16,1/4,-3/8,1/4,-1/16];%[-1,2,-1]/2;
for i=1:length(hH)
for j=1:length(hH)
hH2D(i,j)=hH(i)*hH(j);
end
end
BI=imfilter(newBI,hH2D,'replicate'); %修正后的边缘
BI=double(BI);
Irecover=newBI+L0;
for i=1:H
for j=1:W
if Irecover(i,j)<0
Irecover(i,j)=0;
else if Irecover(i,j)>255
Irecover(i,j)=255;
end
end
end
end
%%
EP1D=[-0.15,0.25,0.7,0.25,-0.15];
for i=1:length(EP1D)
for j=1:length(EP1D)
EP2D(i,j)=EP1D(i)*EP1D(j);
end
end
Irepro = imfilter(Irecover,EP2D,'replicate');
figure,imshow(uint8(B),[]);
title('原图');
figure,imshow(uint8(Irecover),[]);
title(['高频非线性增强后的图像']);
figure,imshow(uint8(Irepro),[]);
title(['非线性增强后再补偿的图像']);
3.运行结果
文章来源:https://www.toymoban.com/news/detail-517429.html
文章来源地址https://www.toymoban.com/news/detail-517429.html
到了这里,关于13.1 非线性变化的图像增强和补偿——滤波器对图像作增强提高视觉质量(matlab程序)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!