我们从密码学角度来聊聊助记词。
随着区块链钱包的发展和分层确定性(HD)钱包技术的普及,越来越多的用户开始熟悉了一个叫“助记词”的概念,很多人都已经习惯了从一开始使用一个钱包的时候,就先抄好单词认真保管,并且他们对于助记词的重要性也有了很深刻的理解。
说到助记词,有人可能会问了,为什么有些钱包是12个单词,另一些则是24个单词的助记词呢?是不是单词越多就越安全呢?
其实,与大部分人的直觉相反,从密码学的角度上讲,12单词的安全强度和24个单词是一样的,12个单词已经足够安全,增加单词数并不能提高安全级别。
虽然按照比特币BIP32/44/39规范,从 2048个单词词库中选择24个助记词的概率空间>2^256,而选择 12 个助记词的概率空间>2^128,从概率空间上看起来24个助记词的安全强度好像是要高很多,但本文将从密码学的角度给你澄清这一事实,即“12个助记词和24个助记词的密码学安全强度是一样的”。
首先我们需要理解一个很著名的数学理论,叫“生日悖论”(Birthday Paradox)。
问大家一个问题,假设一个班级里有 23 个人,问这个班里有两个生日相同的人的概率有多大?直觉上,大家可能会觉得概率很低,几乎不可能,一年有 365 天呢,两个人同一天生的概率得是多小啊。但数学往往就是反直觉的,其真实概率要大于 50%,如果是 30 个人的班级,概率则会大于 70%, 60 个人则大于 99% ,也就是几乎肯定有两个人生日相同,你敢信不?
这就是著名的“生日悖论”
生日悖论这一简单的概率理论对于密码学的影响是巨大的,因为基于这一理论产生了一种名为“生日攻击”的密码学攻击手段,基于这一攻击手段,所有的哈希函数(Hash)的密码学安全强度都会降低到其概率空间位数的1/2,即 2^n 概率空间的密码学安全强度为 2^(n/2),如果是 2^256,则其安全强度为 2^128。
好了,在进一步讲述生日攻击之前,我们还要做点科普,学习几个密码学基本概念:
-
原像攻击:我们都知道哈希函数是不可逆的,y=hash(x),知道y,我们是无法得到x的。如果有一种攻击方式能使得您得到x,那这种攻击方式就叫做原像攻击;
-
次原像攻击:如果有一种攻击方式能让你找到另一个x’,使得 hash(x’) 也等于 y,即y=hash(x)=hash(x’),这种找到了另一个x’的攻击方式叫做次原像攻击;
-
碰撞攻击:碰撞攻击的意思是,虽然我们找不到原像,也找不到次原像,但通过一定范围内的计算,能够找到一对儿碰撞hash(z)=hash(z’),就像虽然一年有365天,但每23个人就有50%的概率出现一次生日的碰撞,这使得我们不需要遍历365次,而只需随机抽取23个数就有50%的可能性找到一对儿碰撞,这就是碰撞攻击;
对原像攻击、次原像攻击和碰撞攻击有了基本的理解了之后,您就应该能明白,原像或次原像攻击都很难,因为几乎要遍历整个概率空间,如果算法没有漏洞的话,对于 2^256 的概率空间,您就需要遍历几乎 2^256 次才有希望找到一个原像或者次原像。而对于碰撞攻击来说,您只需要遍历 2^128 次,就能找到一对儿碰撞。
那对于密码学签名的碰撞攻击又该如何进行呢?
我们假设你要对一个消息m做密码学签名,攻击者知道m是正确的消息,并且准备了一份伪造的消息m’,毫无疑问,hash(m)<>hash(m’),拿着m’是骗不了你的。
现在,攻击者准备了大量的稍做修改的m,又准备了大量的稍做修改的m’,这里所提到的“稍作修改”并不影响m的正确性和m’的伪造性。
然后,攻击者再从大量的m和大量的m’中找到一对儿hash(m)=hash(m’),其难度是2(n/2),也就是说,对于2256的概率空间,攻击者需要准备2128份正确消息m和2128份伪造消息m’,从中就能找到一对儿碰撞hash(m)=hash(m’)。
最后,攻击者拿碰撞到的m让你做密码学签名,并将m替换为m’,攻击成功。文章来源:https://www.toymoban.com/news/detail-517522.html
好了,现在大家应该基本上理解了生日悖论和生日攻击的基本原理了,对于密码学货币来说,2256的概率空间其密码学安全强度为2128,12个单词的助记词的概率空间也是2^128,增加助记词的概率空间并不能提高密码学安全强度,对于钱包助记词来说,12个单词和24个单词一样安全的。文章来源地址https://www.toymoban.com/news/detail-517522.html
到了这里,关于比特币/以太坊/加密货币/网络/区块链/钱包助记词:密码学的角度上,24个单词比12个单词更安全吗的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!