AIGC产业研究报告2023——三维生成篇

这篇具有很好参考价值的文章主要介绍了AIGC产业研究报告2023——三维生成篇。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

定义

人工智能三维生成是指利用深度神经网络学习并生成物体或场景的三维模型,并在三维模型的基础上将色彩与光影赋予物体或场景使生成结果更加逼真。在应用中,生成物体或场景的三维模型称为三维建模,生成三维模型的色彩与光影称为三维渲染。

主要类型

三维生成中学习与生成的三维数据可分为显性表达数据与隐性表达数据两类,显性表达数据主要包括体素栅格、点云与网格;隐性表达数据是以神经网络参数表达的三维场景,即神经场。根据学习与生成的三维数据类型,人工智能三维生成可以分为显性数据驱动型与隐性数据驱动型。

在利用人工智能技术前,传统的三维生成工作中全部使用显性表达的三维数据,因此早期人工智能三维生成的研究同样聚焦于学习并生成显性表达的三维数据,这类人工智能三维生成可以称为原生三维型。

人工智能直接学习与生成三维数据存在诸多问题,其中的重点问题之一是可学习的三维数据量小且不满足多样性要求。为解决这一问题,许多人工智能三维生成的研究聚焦于从二维图像中学习并生成三维数据,这类人工智能三维生成可以称为二维升维型。

技术发展的关键阶段

AIGC产业研究报告2023——三维生成篇,趋势分析,科技,趋势热点,AIGC,人工智能,python

2018年前受限于技术发展,仅有原生三维型人工智能三维生成应用,使用的模型有VAE模型、流模型、GAN模型、EBM模型、扩散模型等,其中GAN模型在生成效果方面的优势使其在2022年前一直是人工智能三维生成的主流模型,但由于训练难度极大,对硬件要求极高等问题,产业级应用发展十分受限。

由于二维图像生成技术的快速进步与应用的蓬勃发展,因此二维升维型是目前人工智能三维生成研究与应用的关注重点。

●    2018年-2020年:二维升维萌芽期

2018年,将三维内容表达为神经网络参数的神经场诞生。虽然神经场表达的仍然是三维数据,且由于缺乏学习数据在2018年至2020间其发展速度十分缓慢,但为二维升维派奠定了技术基础。

●    2020年-2022年:二维升维技术发展期

2020年,伯克利、谷歌与加大圣地亚哥分校的联合团队提出神经辐射场(NeRF)算法。神经辐射场算法可以从静态二维图像中感知其三维属性,生成内容统一但视角不同的二维图像,即具备三维感知的图像。由于生成的图像精度高且可以生成大场景的三维感知图像,因此受到广泛关注且出现大量相关研究,加速二维升维技术发展。在应用方面,由于训练难度大、对硬件要求高、生成效率低等问题,仅能进行试验性与娱乐性的小范围应用。在产业应用方面,虽然出现将显性表达与隐性表达相结合的相关研究,但除以上问题外,在与传统三维生成工作的衔接和满足产业应用要求方面仍然存在诸多问题,因此产业应用发展缓慢。

●    2022年-至今:二维升维应用探索期

2022年中,以Stable Diffusion、Dall·E为代表的二维图像生成应用快速发展,生成的二维图像质量与想象力迅速提升。得益于此,二维升维型三维生成应用的商业化价值进一步提升,产业界对其关注度因此迅速提升,技术发展再次提速。目前,二维升维型三维生成的训练难度、对硬件要求、生成效率等仍然是其应用商业化的巨大阻碍,但产业界公司加强了其与传统三维生成工作的衔接性,并尝试开发产业级应用,二维升维型三维生成应用的商业化仍然有待探索。

主流模型实现原理及优缺点

●    Dream Fields模型

2021年末,Dream Fields模型首次将CLIP¹模型与NeRF模文章来源地址https://www.toymoban.com/news/detail-518078.html

到了这里,关于AIGC产业研究报告2023——三维生成篇的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 中国触觉传感器产业运行情况分析与投资规划研究报告2021-2027年版

      第一章 触觉传感器相关介绍 1.1 触觉传感器相关原理及概念 1.1.1 人类触觉感知原理 1.1.2 触觉传感原理介绍 1.1.3 触觉传感器概念介绍 1.1.4 触觉传感器功能介绍 1.2 触觉传感器分类 1.2.1 压阻式触觉传感器 1.2.2 光传感式触觉传感器 1.2.3 电容效应式触觉传感器 1.2.4 磁导式触觉传

    2024年02月09日
    浏览(43)
  • AIGC 语言大模型研究报告

    这份报告可以被划分为两大部分。 第一部分 集中于ChatGPT的发展和运作原理,为了增强理解,我们将先探讨自然语言处理的历史发展。 第二部分 主要聚焦于由大模型引领的新的研究领域,并深入介绍在每个领域中可以进行的具体研究工作及思路。同时,将讨论作为一个学生

    2024年02月09日
    浏览(36)
  • 行业报告 | AIGC发展研究

    原创 | 文 BFT机器人 技术篇 深度学习进化史:知识变轨 风起云涌 已发生的关键步骤: 人工神经网络的诞生 反向传播算法的提出 GPU的使用 大数据的出现 预训练和迁移学习 生成对抗网络 (GAN) 的发明 强化学习的成功应用 自然语言处理的突破 即将发生的关键步骤: 通用人工智

    2024年02月13日
    浏览(42)
  • ChatGPT研究报告:AIGC带来新一轮范式转移

    以ChatGPT为代表的AIGC(人工智能生成内容)将成为新一轮范式转移的开始。 需要声明,我并不是人工智能专业,只是在愈演愈烈的AI焦虑下,不想被这个技术潮流割韭菜,为此我特意搜集了大量资料,体系化的梳理了AIGC相关的信息。 本文约4000字,目标是快速建立AIGC知识体系

    2023年04月13日
    浏览(87)
  • 再获认可!万里数据库参编中国信通院数据库研究报告 GreatSQL入选中国数据库产业图谱

    当前,全球数字经济加速发展,数据正在成为重组全球要素资源、重塑全球经济结构、改变全球竞争格局的关键力量。 数据库作为存储与处理数据的关键技术,在数字经济浪潮下,不断涌现新技术、新业态、新模式。 7月4-5日, 由中国通信标准化协会和中国信息通信研究院主

    2024年02月13日
    浏览(58)
  • 行业报告 | 清华大学AIGC发展研究1.0震撼发布!(技术+未来篇)

    文 | BFT机器人   深度学习进化史:知识变轨 风起云涌 已发生的关键步骤: 人工神经网络的诞生 反向传播算法的提出 GPU的使用 大数据的出现 预训练和迁移学习 生成对抗网络 (GAN) 的发明 强化学习的成功应用 自然语言处理的突破 即将发生的关键步骤: 通用人工智能 (AGI) 全维

    2024年02月15日
    浏览(38)
  • 计算机行业AIGC算力时代系列报告-ChatGPT芯片算力:研究框架

     简介 “AI算力时代已经来临,计算机行业正在经历着一场前所未有的变革!” 这是一个充满活力和兴奋的时代,人工智能(AI)已经成为了计算机行业中最为炙手可热的话题。随着技术的不断发展和进步,计算机的算力正在以惊人的速度提高,这将彻底改变我们的生活和工

    2023年04月25日
    浏览(41)
  • 2023中国物流系统集成商百强榜研究报告(附下载)

    随着智能物流建设的不断深入,企业应用了越来越多的自动化、智能化物流设备与管理软件。但各物流功能之间的效益背反问题如何解决? 各品牌与类型物流设备的接口各异如何统一调度? 各物流设备与管理软件之间的数据如联通传输? 乃至物流设备与生产设备、物流管理软

    2024年02月08日
    浏览(28)
  • AIGC-AI内容生成深度产业报告

    随着人工智能技术的不断发展和进步,AI内容生成已经成为了一个热门的应用领域。其中,AIGC(AI Generated Content)是最为典型的应用之一。AIGC是指通过人工智能技术生成的各种文本、图像、音频、视频等各种形式的内容,被广泛应用于新闻、广告、电商、游戏、文学、艺术等

    2024年02月03日
    浏览(60)
  • Insight量子位智库 ✪ AIGC/Al生成内容产业展望报告

    AIGC全称为 Al-Generated Content ,指基于生成对抗网络GAN、大型预训练模型等人工智能技术,通过已有数据寻找规律,并通过适当的泛化能力生成相关内容的技术。与之相类似的概念还包括Synthetic media,合成式媒体,主要指基于Al生成的文宇、图像、音频等。 Gartner也提出了相似概

    2024年02月09日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包