数据结构与算法 —— 最短路径Dijkstra算法(迪杰斯特拉)详细图解以及python实现

这篇具有很好参考价值的文章主要介绍了数据结构与算法 —— 最短路径Dijkstra算法(迪杰斯特拉)详细图解以及python实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

前言

1. 介绍

2. 加权图

2.1 概念

3. 最短路径 -- Dijkstra 算法

3.1 历史

3.2 Dijkstra 算法的基本思路

3.3 Dijkstra 算法图解

4.  python中dijkstra算法的实现

5. 总结 


前言

前两章我们讲到了关于图的基本知识,和广度/深度优先搜索。

本章,我们将介绍加权图最短路径的相关知识。


1. 介绍

最短路径是图论中常见问题。

最短路径是指在一个图中找到两个节点之间的最短路径。

最短路径算法常见的有 floyd算法(弗洛伊德算法)和 dijkstra算法(迪杰斯特拉)。本文只介绍dijkstra算法
最短路径运用非常广泛,比如在导航系统中,确定两个地点间哪条路线最短;在网络路由中,路由器需要找到最短路径来转发数据包。


2. 加权图

2.1 概念

加权图是指每条边都带有权重的图。每个边的权重可以表示两个顶点之间的距离、成本或任何其他可以量化的指标。实际上,边的权重可以为负数,但是本章只介绍最短路径中的dijkstra算法且这种算法的前提条件就是权重不能为负数,所以不将负数的权重拓展到本文

下面的加权图中,每一个红色的数字都代表着那条边的权重。

迪杰斯特拉算法python实现,算法,python,图论


3. 最短路径 -- Dijkstra 算法

3.1 历史

这个算法由荷兰杰出计算机科学家、软件工程师艾兹赫尔·戴克斯特拉 (Edsger W. Dijkstra)(1930年5月11日~2002年8月6日)发明。他是计算机先驱之一,与高德纳(Donald Ervin Knuth)并称为我们这个时代最伟大的计算机科学家。

从 Rotterdam 到 Groningen 的最短路线是什么?我花了大概 20 分钟时间设计了这个寻找最短路径的算法。一天早上我正和我年轻的未婚妻在 Amsterdam 逛街,觉得有点累了,我们就坐在咖啡厅的露台上喝了一杯咖啡,我在想是否能够解决这个问题,然后,我设计出了这个最短路径算法。我说过,这是一个 20 分钟的设计。事实上,三年之后的 1959 年它才被发布,现在看来依然很不错,其原因之一是我当时设计的时候没有纸和笔,从而不得不极力避免所有可避免的复杂性。最终,令我惊讶的是,这个算法成为了我成名的基石之一。

节选自文章《An interview with Edsger W. Dijkstra》

3.2 Dijkstra 算法的基本思路

首先将起始节点的距离标记为0,其他节点的距离因为还不确定所以先需要标记为无穷大。

然后,在图中找到距离起始节点最近的节点,更新其相邻节点的距离,距离为从起始节点到该节点的距离加上该节点到相邻节点的距离。

不断循环此过程,直到所有节点都被访问过。

这就是Dijkstra 算法的基本思路。

3.3 Dijkstra 算法图解

在下面这个图的基础上,我们可以一步一步来分析Dijkstra 算法的过程。

我们的目的是用此算法找到节点D到任意其他节点的最短路径。

迪杰斯特拉算法python实现,算法,python,图论

1. 首先我们创建一个表格来记录节点D到所有节点的距离(自身为0,其余初始化为无穷大),还需要记录最短路径中每个节点的先驱节点(初始化为空)。最后需要一个flag去标记已经访问过的节点(初始化为F)。

节点 Flag 距离 先驱节点
A F
B F
C F
D F 0
E F
F F
G F
H F

2. 检查所有未标记节点中距离最短的节点,就是节点D,将其加入最短路径中,并标记。 

迪杰斯特拉算法python实现,算法,python,图论

节点 Flag 距离 先驱节点
A F
B F
C F
D T 0
E F
F F
G F
H F

3. 更新经过节点D的相邻节点距离到起始节点的距离,也就是D-B,D-E,D-G的距离,分别是4,1,5,同时使节点D作为他们的先驱节点。

节点 Flag 距离 先驱节点
A F
B F 4 D
C F
D T 0
E F 1 D
F F
G F 5 D
H F

4. 检查所有未标记节点中距离最短的节点,就是节点E,将其加入最短路径中,并标记。

迪杰斯特拉算法python实现,算法,python,图论

节点 Flag 距离 先驱节点
A F
B F 4 D
C F
D T 0
E T 1 D
F F
G F 5 D
H F

5.  更新经过节点E的相邻节点到起始节点的距离,也就是D-E-B,D-E-C,D-E-F,D-E-G和D-E-H的距离,分别是9,11,12,7,13。但是因为D-B和D-G的路径在上一步已经更新过了,并且距离要小于D-E-B和D-E-G的距离,所以不更新节点B和节点G的距离,更新节点C,F和H的距离,同时使节点E作为他们的先驱节点。

节点 Flag 距离 先驱节点
A F
B F 4 D
C F 11 E
D T

0

E T 1 D
F F 12 E
G F 5 D
H F 13 E

6.  检查所有未标记节点中距离最短的节点,就是节点B,将其加入最短路径中,并标记。

迪杰斯特拉算法python实现,算法,python,图论

节点 Flag 距离 先驱节点
A F
B T 4 D
C F 11 E
D T

0

E T 1 D
F F 12 E
G F 5 D
H F 13 E

7. 更新经过节点B的相邻节点到起始节点的距离,也就是D-B-A,距离为6,同时使节点B作为他的先驱节点。 

节点 Flag 距离 先驱节点
A F 6 B
B T 4 D
C F 11 E
D T

0

E T 1 D
F F 12 E
G F 5 D
H F 13 E

8.  检查所有未标记节点中距离最短的节点,就是节点G,将其加入最短路径中,并标记。

迪杰斯特拉算法python实现,算法,python,图论

节点 Flag 距离 先驱节点
A F 6 B
B T 4 D
C F 11 E
D T

0

E T 1 D
F F 12 E
G T 5 D
H F 13 E

9.   更新经过节点G的相邻节点到起始节点的距离,也就是D-G-E,距离为11,但是因为之前保存过D-E的距离为1,很明显D-E的距离要更近一些,所以不更新表格。

10. 检查所有未标记节点中距离最短的节点,就是节点A,将其加入最短路径中,并标记。

迪杰斯特拉算法python实现,算法,python,图论

节点 Flag 距离 先驱节点
A T 6 B
B T 4 D
C F 11 E
D T

0

E T 1 D
F F 12 E
G T 5 D
H F 13 E

11.  更新经过节点A的相邻节点到起始节点的距离,也就是D-B-A-C,距离为15,但是因为之前保存过D-E-C的距离为11,D-E-C的距离要近于D-B-A-C,所以不更新表格。

12.  检查所有未标记节点中距离最短的节点,就是节点C,将其加入最短路径中,并标记。

迪杰斯特拉算法python实现,算法,python,图论

节点 Flag 距离 先驱节点
A T 6 B
B T 4 D
C T 11 E
D T

0

E T 1 D
F F 12 E
G T 5 D
H F 13 E

13. 更新经过节点C的相邻节点到起始节点的距离,也就是D-E-C-F,距离为14,但是因为之前保存过D-E-F的距离为12,D-E-F的距离要近于D-E-C-F,所以不更新表格。 

14. 检查所有未标记节点中距离最短的节点,就是节点F,将其加入最短路径中,并标记。

迪杰斯特拉算法python实现,算法,python,图论

节点 Flag 距离 先驱节点
A T 6 B
B T 4 D
C T 11 E
D T

0

E T 1 D
F T 12 E
G T 5 D
H F 13 E

15. 更新经过节点F的相邻节点到起始节点的距离,也就是D-E-F-H,距离为29,但是因为之前保存过D-E-H的距离为13,D-E-H的距离要近于D-E-F-H,所以不更新表格。

16.   检查所有未标记节点中距离最短的节点,就是节点H,将其加入最短路径中,并标记。

迪杰斯特拉算法python实现,算法,python,图论

节点 Flag 距离 先驱节点
A T 6 B
B T 4 D
C T 11 E
D T

0

E T 1 D
F T 12 E
G T 5 D
H T 13 E

17. 算法结束,此时我们拥有了从出发点D到任意一个节点的距离以及路径。最短路径可以根据先驱节点倒推出来,比如从D到H的最短距离为13,最短路径为D-E-H。

节点 Flag 距离 先驱节点
A T 6 B
B T 4 D
C T 11 E
D T

0

E T 1 D
F T 12 E
G T 5 D
H T 13 E

最短距离:看节点H,发现与起始点D的最短距离为13。
最短路径:看H的先驱节点,发现是E,在看E的先驱节点,发现是D。那么,从D到H的最短路径就是D-E-H了。 


4.  python中dijkstra算法的实现

import sys

def dijkstra(graph, start_node):
    unvisited_nodes = {node: sys.maxsize for node in graph}  # 初始化所有节点距离为无穷大
    unvisited_nodes[start_node] = 0  # 起始节点距离为0
    shortest_paths = {start_node: (0, [])}  # 起始节点的路径和距离

    while unvisited_nodes:
        current_node = min(unvisited_nodes, key=unvisited_nodes.get)  # 找到未访问节点中距离最小的节点
        current_distance = unvisited_nodes[current_node]

        for neighbor, distance in graph[current_node].items():
            if neighbor not in unvisited_nodes: continue  # 已访问过的节点跳过
            new_distance = current_distance + distance
            if new_distance < unvisited_nodes[neighbor]:  # 如果找到更短路径,更新
                unvisited_nodes[neighbor] = new_distance
                shortest_paths[neighbor] = (new_distance, shortest_paths[current_node][1] + [current_node])  # 更新路径和距离

        unvisited_nodes.pop(current_node)  # 当前节点已访问过,从未访问节点中删除

    return shortest_paths  # 返回最短路径和距离

# 测试Dijkstra算法
if __name__ == "__main__":
    graph = {
        'A': {'B': 2, 'C': 9},
        'B': {'A': 2, 'D': 4, 'E': 8},
        'C': {'A': 9, 'E': 10, 'F': 3},
        'D': {'B': 4, 'E': 1, 'G': 5},
        'E': {'B': 8, 'C': 10, 'D': 1, 'F': 11, 'G': 6, 'H': 12},
        'F': {'C': 3, 'E': 11, 'H': 17},
        'G': {'D': 5, 'E': 6},
        'H': {'E': 12, 'F': 17},
    }
    start_node = 'D'
    shortest_paths = dijkstra(graph, start_node)
    print(shortest_paths)

首先我创建了一个上面举例子的图,然后设置顶点D为起始顶点。

运行上面代码之后会打印出:

{'D': (0, []), 'B': (4, ['D']), 'E': (1, ['D']), 'G': (5, ['D']), 'C': (11, ['D', 'E']), 'F': (12, ['D', 'E']), 'H': (13, ['D', 'E']), 'A': (6, ['D', 'B'])}

我们可以很明显找到从D到任意一个顶点的最短路径和距离。


5. 总结 

Dijkstra算法是非常经典的最短路径算法,这种算法可以找到起始顶点与图中任意一个顶点的最短路径。但是其也有限制,图的权重必须不能有负数。如果图的权重带有负数,则需要使用Bellman-ford算法,如果想要确定任意两点的最短路径,则需要使用floyd算法。


ps. 本来打算把最小生成树也在这一章总结的,但是最近学校事情比较多,只能往后拖一拖了TOT 

希望大家能从这篇文章中对Dijkstra算法有更清晰的了解,如果我有什么地方讲的不对,欢迎大家指出!文章来源地址https://www.toymoban.com/news/detail-518366.html

到了这里,关于数据结构与算法 —— 最短路径Dijkstra算法(迪杰斯特拉)详细图解以及python实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构--迪杰斯特拉(Dijkstra)算法

    生活封锁了我们,只要我们的心不死,生活便永远不是一汪死水,而我们,依然会绽放最美的姿态。 戴克斯特拉算法(英语:Dijkstra’s algorithm),又称迪杰斯特拉算法、Dijkstra算法,是由荷兰计算机科学家艾兹赫尔·戴克斯特拉在1956年发现的算法,并于3年后在期刊上发表。

    2024年02月04日
    浏览(37)
  • 大话数据结构-迪杰斯特拉算法(Dijkstra)和弗洛伊德算法(Floyd)

      最短路径,对于图来说,是两顶点之间经过的边数最少的路径;对于网来说,是指两顶点之间经过的边上权值之和最小的路径。路径上第一个顶点为源点,最后一个顶点是终点。   以如下无向图为例:   我们来计算下标为0的顶点,到其他顶点的最短路径,首先定义

    2024年02月06日
    浏览(32)
  • 【数据结构】最短路径算法实现(Dijkstra(迪克斯特拉),FloydWarshall(弗洛伊德) )

    最短路径问题 :从在带权有向图G中的某一顶点出发,找出一条通往另一顶点的最短路径,最短也就是沿路径各边的权值总和达到最小。 单源最短路径问题:给定一个图G = ( V , E ) G=(V,E)G=(V,E),求源结点s ∈ V s∈Vs∈V到图 中每个结点v ∈ V v∈Vv∈V的最短路径 针对一个带权

    2024年02月04日
    浏览(39)
  • C语言 最短路径 迪杰斯特拉(Dijkstra)算法

    迪杰斯特拉(Dijkstra)算法是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中单源最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最

    2024年02月03日
    浏览(31)
  • 大二数据结构实验(迪杰斯特拉最短路径)

    大二数据结构实验,有详细批注,代码可以直接运行,希望可以给大家提供到帮助。 实验目的 掌握图的邻接矩阵的存储定义。 掌握图的最短路径(Dijsktra)算法的实现。 实验内容 设计校园平面图,所含景点不少于8个。以图中顶点表示学校内各景点,存放景点的名称、景点

    2024年02月12日
    浏览(31)
  • java实现迪杰斯特拉(Dijkstra)算法求解最短路问题

    迪杰斯特拉(Dijkstra)算法是由荷兰计算机科学家狄克斯特拉于1959年提出的。是寻找从一个顶点到其余各顶点的最短路径算法,可用来解决最短路径问题。 迪杰斯特拉算法采用贪心算法的策略,将所有顶点分为已标记点和未标记点两个集合,从起始点开始,不断在未标记点中寻

    2024年02月12日
    浏览(32)
  • MATLAB轻松绘制地图路线——Dijkstra(迪杰斯特拉)算法最短路径规划

    利用MATLAB绘制地图需要三个基本数据: 节点 节点坐标 节点间相通的路线 以11B交通巡警平台调度问题中的A区数据为例: (数据及工程文件下载链接见文末) Demo1: 可通过已知节点的坐标,计算出各节点之间的距离,有Matlab基础的同学可以尝试Demo2, 也可通过Excel自行实现;

    2023年04月21日
    浏览(37)
  • 使用omp并行技术加速最短路径算法-迪杰斯特拉(Dijkstra)算法(记录最短路径和距离)

    原理: Dijkstra算法是解决**单源最短路径**问题的**贪心算法** 它先求出长度最短的一条路径,再参照该最短路径求出长度次短的一条路径     直到求出从源点到其他各个顶点的最短路径。 首先假定源点为u,顶点集合V被划分为两部分:集合 S 和 V-S。 初始时S中仅含有源点u,

    2024年02月10日
    浏览(34)
  • 迪杰斯特拉(Dijkstra's )算法——解决带权有向无向图最短路径

    迪杰斯特拉算法(Dijkstra\\\'s Algorithm),又称为狄克斯特拉算法,是一种用于解决带权重有向图或无向图最短路径问题的算法。该算法由荷兰计算机科学家艾兹赫尔·狄克斯特拉在1956年发明,是一种广泛应用于网络路由和其他领域的算法。 在 2001 年的一次采访中,Dijkstra 博士透露

    2024年02月03日
    浏览(38)
  • 数据结构第13周 :( 迪杰斯特拉最短路径 + 弗洛伊德求最短路径 + 欧拉回路 + Invitation Cards)

    【问题描述】 在带权有向图G中,给定一个源点v,求从v到G中的其余各顶点的最短路径问题,叫做单源点的最短路径问题。 在常用的单源点最短路径算法中,迪杰斯特拉算法是最为常用的一种,是一种按照路径长度递增的次序产生最短路径的算法。 在本题中,读入一个有向图

    2024年02月13日
    浏览(25)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包