分类目录:《深入浅出TensorFlow2函数》总目录
相关文章:
· 深入浅出TensorFlow2函数——tf.exp
· 深入浅出TensorFlow2函数——tf.math.exp
· 深入浅出Pytorch函数——torch.exp
· 深入浅出PaddlePaddle函数——paddle.exp
按元素计算 x x x的指数 y = e x y=e^x y=ex。
语法
tf.math.exp(
x, name=None
)
参数
-
x
:[tf.Tensor
] 必须是以下类型之一:bfloat16
、half
、float32
、float64
、complex64
、complex128
。 -
name
:[可选] 操作的名称。
返回值
一个与x
类型相同的tf.Tensor
。
实例
输入:文章来源:https://www.toymoban.com/news/detail-519130.html
x = tf.constant([2.0, 8.0])
tf.math.exp(x)
输出:文章来源地址https://www.toymoban.com/news/detail-519130.html
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([ 7.389056, 2980.958 ], dtype=float32)>
函数实现
@tf_export("math.exp", "exp")
@dispatch.register_unary_elementwise_api
@dispatch.add_dispatch_support
def exp(x, name=None):
r"""Computes exponential of x element-wise. \\(y = e^x\\).
This function computes the exponential of the input tensor element-wise.
i.e. `math.exp(x)` or \\(e^x\\), where `x` is the input tensor.
\\(e\\) denotes Euler's number and is approximately equal to 2.718281.
Output is positive for any real input.
>>> x = tf.constant(2.0)
>>> tf.math.exp(x)
<tf.Tensor: shape=(), dtype=float32, numpy=7.389056>
>>> x = tf.constant([2.0, 8.0])
>>> tf.math.exp(x)
<tf.Tensor: shape=(2,), dtype=float32,
numpy=array([ 7.389056, 2980.958 ], dtype=float32)>
For complex numbers, the exponential value is calculated as
$$
e^{x+iy} = {e^x} {e^{iy}} = {e^x} ({\cos (y) + i \sin (y)})
$$
For `1+1j` the value would be computed as:
$$
e^1 (\cos (1) + i \sin (1)) = 2.7182817 \times (0.5403023+0.84147096j)
$$
>>> x = tf.constant(1 + 1j)
>>> tf.math.exp(x)
<tf.Tensor: shape=(), dtype=complex128,
numpy=(1.4686939399158851+2.2873552871788423j)>
Args:
x: A `tf.Tensor`. Must be one of the following types: `bfloat16`, `half`,
`float32`, `float64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `tf.Tensor`. Has the same type as `x`.
@compatibility(numpy)
Equivalent to np.exp
@end_compatibility
"""
return gen_math_ops.exp(x, name)
到了这里,关于深入浅出TensorFlow2函数——tf.math.exp的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!