OpenCV颜色识别(所有颜色均可识别)

这篇具有很好参考价值的文章主要介绍了OpenCV颜色识别(所有颜色均可识别)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

OpenCV颜色识别实例(所有颜色均可识别)

欢迎访问我的博客sakuraの绘梨衣
本文中的颜色识别为红色,颜色阈值设置如下:

lower_apple = np.array([0, 100, 100])
higher_apple = np.array([10, 200, 200])

识别其他颜色可以参考HSV颜色阈值设置进行更改

下面是识别代码,注释很详细:

import cv2
import numpy as np


def red_identify(img):

    # 灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # 转换为HSV
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

    # 二值化处理
    lower_apple = np.array([0, 100, 100])
    higher_apple = np.array([10, 200, 200])

    mask = cv2.inRange(hsv, lower_apple, higher_apple)

    # 膨胀操作
    kernel = np.ones([5, 5], dtype=np.uint8)
    dilate = cv2.dilate(mask, kernel, iterations=1)

    # 画出轮廓
    cnts, hierarchy = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

    # 判断是否有轮廓
    if len(cnts) == 0:

        # 没有即显示原图
        cv2.imshow("red_identify", img)
        return

    max_cnt = max(cnts, key=cv2.contourArea)
    cv2.drawContours(img, max_cnt, -1, (0, 0, 255), 2)

    # 最大外接矩形
    (x, y, w, h) = cv2.boundingRect(max_cnt)
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 3)

    cv2.imshow("red_identify", img)


if __name__ == "__main__":

    # 打开摄像头
    cap = cv2.VideoCapture(0)

    # 设置摄像头参数,3和4为像素大小,5为帧率
    cap.set(3, 256)
    cap.set(4, 256)
    cap.set(5, 60)

    while True:

        # 循环读取每一帧
        flag, frame = cap.read()

        #  读取失败
        if not flag:
            print("Camera error!")
            break

        # 调用颜色识别
        red_identify(frame)

        # 若没有按下q键,则每10毫秒显示一帧(OxFF为"q"的ASCII码)
        if cv2.waitKey(10) & 0xFF == ord('q'):
            break

    cap.release()
    cv2.destroyAllWindows()

下面是识别效果:

opencv颜色识别,opencv,计算机视觉,python文章来源地址https://www.toymoban.com/news/detail-519177.html

到了这里,关于OpenCV颜色识别(所有颜色均可识别)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 计算机视觉:使用opencv实现车牌识别

    汽车车牌识别(License Plate Recognition)是一个日常生活中的普遍应用,特别是在智能交通系统中,汽车牌照识别发挥了巨大的作用。汽车牌照的自动识别技术是把处理图像的方法与计算机的软件技术相连接在一起,以准确识别出车牌牌照的字符为目的,将识别出的数据传送至交

    2024年02月04日
    浏览(47)
  • 计算机视觉:使用opencv实现银行卡号识别

    OpenCV是Open Source Computer Vision Library(开源计算机视觉库)的简称,由Intel公司在1999年提出建立,现在由Willow Garage提供运行支持,它是一个高度开源发行的计算机视觉库,可以实现Windows、Linux、Mac等多平台的跨平台操作。opencv是一个用于图像处理、分析、机器视觉方面的开源函

    2024年02月05日
    浏览(45)
  • 计算机视觉实战--OpenCV进行红绿灯识别

    前言: Hello大家好,我是Dream。 OpenCV是一个开源的计算机视觉库 ,可以用于实现各种图像和视频处理任务,包括红绿灯识别。可以帮助自动驾驶汽车、智能交通系统等设备准确地识别红绿灯的状态,以便做出正确的决策。今天,就有Dream带领大家复盘一下计算机视觉中最经典

    2024年02月07日
    浏览(44)
  • python+opencv+机器学习车牌识别 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于机器学习的车牌识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分 工作量:4分 创新点:3分 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-seni

    2024年02月07日
    浏览(65)
  • 【opencv】计算机视觉:停车场车位实时识别

    目录 目标 整体流程 背景 详细讲解 前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站 目标 我们想要在一个实时的停车场监控视频中,看看要有多少个车以及有多少个空缺车位。然后我们可以标记空的,然后来

    2024年02月05日
    浏览(44)
  • 计算机竞赛 图像识别-人脸识别与疲劳检测 - python opencv

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于图像识别的人脸识别与疲劳检测系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https://gitee.co

    2024年02月12日
    浏览(70)
  • 计算机竞赛 深度学习+opencv+python实现昆虫识别 -图像识别 昆虫识别

    🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习的昆虫识别算法研究与实现 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:4分 创新点:4分 🧿 更多资料, 项目分享: https://git

    2024年02月07日
    浏览(88)
  • 基于深度学习的人脸性别年龄识别 - 图像识别 opencv 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 毕业设计 人脸性别年龄识别系统 - 图像识别 opencv 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https

    2024年02月06日
    浏览(67)
  • 计算机竞赛 基于深度学习的人脸性别年龄识别 - 图像识别 opencv

    🔥 优质竞赛项目系列,今天要分享的是 🚩 毕业设计 人脸性别年龄识别系统 - 图像识别 opencv 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https

    2024年02月10日
    浏览(94)
  • 计算机竞赛 深度学习 opencv python 公式识别(图像识别 机器视觉)

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的数学公式识别算法实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:4分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/d

    2024年02月07日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包