数值分析:拉格朗日插值法笔记以及C++代码实现

这篇具有很好参考价值的文章主要介绍了数值分析:拉格朗日插值法笔记以及C++代码实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

插值需求的诞生:如何通过已知数据得到函数的近似解析表达式,从而获得更多的有用数据。
在实际应用中常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就需要使用一些数学的方法“模拟产生”一些新的但又比较靠谱的值来满足需求,这就是插值的作用。

一、Lagrange插值节点基函数推导

拉格朗日插值法c++,线性代数,c++,算法
拉格朗日插值法c++,线性代数,c++,算法

二、n次Lagrange插值多项式公式推导

由于上面已经推导出Lagrange插值节点基函数的公式所以下面直接带入就可以了。
拉格朗日插值法c++,线性代数,c++,算法

三、Lagrange插值余项(误差)推导

拉格朗日插值法c++,线性代数,c++,算法

四、例题

拉格朗日插值法c++,线性代数,c++,算法

五、插值误差估计-事后误差估计

拉格朗日插值法c++,线性代数,c++,算法

六、C++代码实现以及验证例题

//定义拉格朗日插值多项式函数.目标:输入想预测的数字返回预测值
//x数组,y数组,num为想要预测的x,n为拉格朗日多项式次数
double Lagrange(double* x,double* y,double num,int n) {
	//x,y数组长度必须一致
	if ((sizeof(x) / sizeof(x[0])) != (sizeof(y) / sizeof(y[0]))) {
		cout << "x,y数组长度不一致" << endl;
		return 99999;
	}
	//给定n+1个节点最多只能构造n次Lagrange插值节点基函数
	if (sizeof(x) / sizeof(x[0]) > n) {
		return 99999;
	}

	//构造Lagrange插值节点基函数
	double* l = new double[n+1];
	for (int k = 0; k <= n; k++) {
		double Z = 1;
		for (int j = 0; j <= n;j++) {
			if (j == k) {
				continue;
			}
			Z = Z * (num - x[j]) / (x[k] - x[j]);
		}
		l[k] = Z;
	}

	//计算L_n(x):
	double Ln = 0;
	for (int k = 0; k <= n; k++) {
		Ln = Ln + l[k]*y[k];
	}
	return Ln;
}
int main() {
	double x[] = { 10,11,12,13 };
	double y[] = { 2.302585,2.397895,2.484907,2.564949 };
	int n = 2;
	double num = 11.25;
	cout << "预测值为:" << Lagrange(x, y, num, n) << endl;
	return 0;
}

拉格朗日插值法c++,线性代数,c++,算法文章来源地址https://www.toymoban.com/news/detail-520760.html

到了这里,关于数值分析:拉格朗日插值法笔记以及C++代码实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 解读 拉格朗日插值法python,保你学明白

    什么是插值法 插值法是一种数学方法,用于在已知数据点(离散数据)之间插入数据,以生成连续的函数曲线。 插值法可以用于确定一个未知数据点的值,并简化复杂的数学计算过程。 插值法的应用广泛,如统计学、工程学、科学研究等领域。 拉格朗日插值法的原理 格朗

    2024年02月08日
    浏览(45)
  • Lagrange插值法实验:求拉格朗日插值多项式和对应x的近似值matlab实现(内附代码)

    已知函数表: 求出Lagrange 插值多项式,并计算x=1.2处的y的近似值。 求解多项式: 求解近似值: 请输入横坐标向量X: X=[1, 2, 4, 5] 请输入纵坐标向量Y: Y=[16,12,8,9] 基函数为: q1(x)=(11 x^2)/12 - (19 x)/6 - x^3/12 + 10/3 q2(x)=(29 x)/6 - (5 x^2)/3 + x^3/6 - 10/3 q3(x)=(4 x^2)/3 - (17 x)/6 - x^3/6 + 5/3 q4(x)=

    2024年02月08日
    浏览(51)
  • 【数值分析实验】(一)插值法(含matlab代码)

            实际问题中许多变量的关系可以用数学函数概念进行刻画,但是在大多数情况下,这些函数的表达式是未知的,或者已知但十分复杂,需要我们将这个函数的未知解析式近似地构造出来,或者用一个简单的函数表达式来代替复杂的函数表达式。基于上述过程,我们

    2024年02月12日
    浏览(48)
  • 数值分析(四) Hermite(埃尔米特)插值法及matlab代码

      本篇为 插值法专栏 第四篇内容讲述,此章主要讲述 Hermite(埃尔米特)插值法 及matlab代码,其中也给出详细的例子让大家更好的理解Hermite插值法 提示 之前已经介绍 牛顿插值法 和 三次样条插值 ,如果没看过前两篇的可以点击以下链接阅读 数值分析(一)牛顿插值法

    2024年02月10日
    浏览(58)
  • 数学建模学习笔记(一):插值法

    本文主要内容是分享博主在学习MATLAB插值与拟合过程中的一些笔记与见解,并记录使用代码实现的过程 一维插值问题可描述为:已知函数在 x 0 , x 1 , … , x n x_0,x_1,…,x_n x 0 ​ , x 1 ​ , … , x n ​ 处的值 y 0 , y 1 , … , y n y_0,y_1,…,y_n y 0 ​ , y 1 ​ , … , y n ​ ,求简单函数 p (

    2024年02月06日
    浏览(56)
  • 数据分析缺失值处理(Missing Values)——删除法、填充法、插值法

    缺失值指数据集中某些变量的值有缺少的情况,缺失值也被称为NA(not available)值。在pandas里使用浮点值NaN(Not a Number)表示浮点数和非浮点数中的缺失值,用NaT表示时间序列中的缺失值,此外python内置的None值也会被当作是缺失值。需要注意的是,有些缺失值也会以其他形式

    2024年02月05日
    浏览(47)
  • Matlab 拉格朗日(lagrange)插值 以及 poly、conv函数理解

    https://songshanhu.csdn.net/643f5384986c660f3cf93c13.html?spm=1001.2101.3001.6661.1utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7Eactivity-1-36407923-blog-83212763.235%5Ev32%5Epc_relevant_increate_t0_download_v2depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7Eactivity-1

    2024年02月07日
    浏览(43)
  • 22matlab数据分析 拉格朗日插值(matlab程序)

    1. 简述        第一部分:问题分析 (1)实验题目:拉格朗日插值算法 具体实验要求:要求学生运用拉格朗日插值算法通过给定的平面上的n个数据点,计算拉格朗日多项式Pn(x)的值,并将其作为实际函数f(x)的估计值。用matlab编写拉格朗日插值算法的代码,要求代码实现用户

    2024年02月15日
    浏览(40)
  • 深度学习基础知识 最近邻插值法、双线性插值法、双三次插值算法

    最邻近插值:将每个目标像素找到距离它最近的原图像素点,然后将该像素的值直接赋值给目标像素 优点 :实现简单,计算速度快 缺点 :插值结果缺乏连续性,可能会产生锯齿状的边缘,对于图像质量影响较大,因此当处理精度要求较高的图像时,通常会采用更加精细的插

    2024年02月03日
    浏览(55)
  • 算法--插值法

    插值法是一种数学方法,主要用于通过已知的离散数据来估算未知值。常见的插值法有线性插值、最近邻插值、双线性插值和双三次插值。以下是其基本原理和应用: 线性插值:假设在两个已知数据点之间,数据的变化是线性的,因此可以通过已知的两点的坐标来计算经过这

    2024年01月18日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包