机器学习复习7

这篇具有很好参考价值的文章主要介绍了机器学习复习7。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

机器学习复习7

1 - 根据下图中绘制的决策树,如果一个动物的耳朵是软的,脸型是圆的,并且有胡须,那么这个模型会预测它是猫还是不是猫?

机器学习复习7,机器学习,机器学习,人工智能

A. 不是猫
B. 是猫

**答案:B **

2 - 以一棵决策树学习来对垃圾邮件和非垃圾邮件进行分类。有20个训练实例,包括10个垃圾邮件和10个非垃圾邮件。
如果算法可以从四个特征中选择,产生四个相应的分割,它将选择哪一个(即纯度最高的)?

A. 左边分割:10封邮件中有5封是垃圾邮件。右边分割:10封邮件中有5封是垃圾邮件
B. 左边分割:2封邮件中有2封是垃圾邮件。右边分割:18封邮件中有8封是垃圾邮件
C. 左边分割:8封邮件中有7封是垃圾邮件。右边分割。12封邮件中有3封是垃圾邮件
D. 左边分割:10封邮件中有10封是垃圾邮件。右边分割:10封邮件中有0封是垃圾邮件

**答案:D **文章来源地址https://www.toymoban.com/news/detail-521478.html

3 - 熵的定义为 \(H(p_1) = - p_1 log_2(p_1) - p_0 log_2(p_0)\),其中 \(P_1\) 是正样本的占比,\(P_0\) 是负样本的占比
在一棵决策树的某一节点上,10个例子中有6个是猫,10个例子中有4个不是猫。哪个表达式可以计算熵 \(H(p_1)H(p_1)\) 这组10只动物的熵?

机器学习复习7,机器学习,机器学习,人工智能

A. \((0.6) \log _{2}(0.6)+(1-0.4) \log _{2}(1-0.4)\)

B. -\((0.6) \log _{2}(0.6)-(1-0.4) \log _{2}(1-0.4)\)

C. \((0.6) \log _{2}(0.6)+(0.4) \log _{2}(0.4)\)

D. -\((0.6) \log _{2}(0.6)-(0.4) \log _{2}(0.4)\)

**答案:D **

4 - 信息增益

信息增益的定义:\(H\left(p_{1}^{\text {root }}\right)-\left(w^{\text {left }} H\left(p_{1}^{\text {left }}\right)+w^{\text {right }} H\left(p_{1}^{\text {right }}\right)\right)\)

在分裂之前,由5只猫和5只非猫组成的群体的熵是H(5/10) H(5/10)。在对某一特征进行分割后,由7只动物(其中4只是猫)组成的小组的熵为H(4/7)H(4/7)。另一组有3只动物(1只是猫),其熵为H(1/3)H(1/3)。信息增益的表达式是什么?

A. \(H(0.5)-\left(\frac{4}{7} * H(4 / 7)+\frac{4}{7} * H(1 / 3)\right)\)

B. \(H(0.5)-\left(\frac{7}{10} H(4 / 7)+\frac{3}{10} H(1 / 3)\right)\)

C. \(H(0.5)-(H(4 / 7)+H(1 / 3))\)

D. \(H(0.5)-(7 * H(4 / 7)+3 * H(1 / 3))\)

**答案:B **

5 - 独热编码

机器学习复习7,机器学习,机器学习,人工智能

为了表示耳朵形状的3种可能值,你可以为耳朵形状定义3个特征:尖耳朵、软耳朵、椭圆形耳朵。对于一个耳朵不尖、不软但呈椭圆形的动物,你如何用特征向量表示这一信息?

A. [0, 0, 1]
B. [1,0,0]
C. [0, 1, 0]
D. [1, 1, 0]

**答案:A **

6 - 对于一个连续值的特征(如动物的体重),数据集中有10只动物。为该特征找到最佳分割的推荐方法是什么?

机器学习复习7,机器学习,机器学习,人工智能

A. 选择10个例子之间的9个中点作为可能的分割点,并找到能带来最高信息增益的分割点
B. 尝试每一个间隔有规律的数值(例如,8、8.5、9、9.5、10等),并找到能带来最高信息增益的分割
C. 使用梯度下降法,找到能带来最高信息增益的分割阈值
D. 使用单次编码将特征转化为0和1的离散特征向量,然后应用我们讨论过的离散特征的算法

**答案:A **

7 - 其中哪些是决定停止分裂的常用标准?(多选)

A. 当树已经达到最大深度时
B. 当额外分裂的信息收益过大时
C. 当一个节点50%是一个类,50%是另一个类时(熵的最高值)
D. 当一个节点中的例子数量低于一个阈值时

**答案:AD **

8 - 对于随机森林,你如何建立每个单独的树,以使它们不都是彼此相同的?

机器学习复习7,机器学习,机器学习,人工智能

A. 对训练数据进行无替换抽样
B. 在同一训练集上多次训练该算法。这自然会产生不同的树
C. 对训练数据进行替换采样
D. 如果你要训练B个树,就在训练集的1/B上训练每个树,所以每个树都是在一个不同的例子集上训练

**答案:C **

9 - 在一项分类任务中,你要在决策树和神经网络之间做出选择,输入x是一张100x100分辨率的图像。你会选择哪个?

A. 决策树,因为输入是非结构化的,决策树通常在非结构化数据中工作得更好
B. 一个神经网络,因为输入的是非结构化的数据,而神经网络通常对非结构化的数据工作得更好
C. 神经网络,因为输入的是结构化数据,而神经网络通常在结构化数据中工作得更好
D. 决策树,因为输入的是结构化数据,而决策树通常在结构化数据中工作得更好

**答案:C **

10 - 替代抽样指的是什么?

A. 它指的是使用一个新的数据样本,我们用它来永久地覆盖(也就是替换)原始数据
B. 它指的是对训练集做一个相同的拷贝的过程
C. 绘制一个例子的序列,当挑选下一个例子时,首先从我们要挑选的集合中删除所有以前绘制的例子
D. 绘制一个例子序列,当挑选下一个例子时,首先将所有先前绘制的例子从我们正在挑选的集合中替换掉

**答案:D **

到了这里,关于机器学习复习7的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能与机器学习

    欢迎关注博主 Mindtechnist 或加入【Linux C/C++/Python社区】一起探讨和分享Linux C/C++/Python/Shell编程、机器人技术、机器学习、机器视觉、嵌入式AI相关领域的知识和技术。 专栏:《机器学习》 ​ ​ ☞什么是人工智能、机器学习、深度学习 人工智能这个概念诞生于1956年的达特茅斯

    2024年02月02日
    浏览(61)
  • 人工智能与机器人|机器学习

    原文链接: https://mp.weixin.qq.com/s/PB_n8woxdsWPtrmL8BbehA 机器学习下包含神经网络、深度学习等,他们之间的关系表示如图2-7所示。 图2-7 关系图 那么什么是机器学习、深度学习、他们的区别又是什么呢? 2.7.1 什么是机器学习? 机器学习是 人工智能 (AI) 和计算机科学的一个分支,

    2024年02月06日
    浏览(77)
  • 人工智能、机器学习、深度学习的区别

    人工智能涵盖范围最广,它包含了机器学习;而机器学习是人工智能的重要研究内容,它又包含了深度学习。 人工智能是一门以计算机科学为基础,融合了数学、神经学、心理学、控制学等多个科目的交叉学科。 人工智能是一门致力于使计算机能够模拟、模仿人类智能的学

    2024年02月08日
    浏览(51)
  • 人工智能与开源机器学习框架

    链接:华为机考原题 TensorFlow是一个开源的机器学习框架,由Google开发和维护。它提供了一个针对神经网络和深度学习的强大工具集,能够帮助开发人员构建和训练各种机器学习模型。 TensorFlow的基本概念包括: 张量(Tensor):张量是TensorFlow中的核心数据结构,它表示多维数

    2024年02月22日
    浏览(60)
  • 【人工智能技术】机器学习工具总览

    当谈到训练计算机在没有明确编程的情况下采取行动时,存在大量来自机器学习领域的工具。学术界和行业专业人士使用这些工具在MRI扫描中构建从语音识别到癌症检测的多种应用。这些工具可在网上免费获得。如果您感兴趣,我已经编制了这些的排名(请参阅本页底部)以

    2024年02月04日
    浏览(64)
  • 机器学习、人工智能、深度学习三者的区别

    目录 1、三者的关系 2、能做些什么 3、阶段性目标 机器学习、人工智能(AI)和深度学习之间有密切的关系,它们可以被看作是一种从不同层面理解和实现智能的方法。 人工智能(AI):人工智能是一门研究如何使计算机能够模仿人类智能的学科。它涵盖了各种技术和方法,

    2024年02月14日
    浏览(57)
  • 12、人工智能、机器学习、深度学习的关系

    很多年前听一个机器学习的公开课,在QA环节,一个同学问了老师一个问题“ 机器学习和深度学习是什么关系 ”? 老师先没回答,而是反问了在场的同学,结果问了2-3个,没有人可以回答的很到位,我当时也是初学一脸懵,会场准备的小礼品也没有拿到。 后来老师解释“机

    2024年02月05日
    浏览(65)
  • 一探究竟:人工智能、机器学习、深度学习

    1.1 人工智能是什么?          1956年在美国Dartmounth 大学举办的一场研讨会中提出了人工智能这一概念。人工智能(Artificial Intelligence),简称AI,是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的

    2024年02月17日
    浏览(47)
  • 深度学习2.神经网络、机器学习、人工智能

    目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、机器学习、人工智能

    2024年02月11日
    浏览(62)
  • 人工智能、机器学习与深度学习之间的关系

    图1. AI、ML与DL关系图 在我们深入研究机器学习和深度学习之前,让我们快速浏览一下它们所属的分支:人工智能(AI)。简而言之,人工智能是一个将计算机科学与大量数据相结合以帮助解决问题的领域。人工智能有许多不同的用例。图像识别,图像分类,自然语言处理,语音

    2024年01月18日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包