💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥
🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳ 座右铭:行百里者,半于九十。
📋 📋 📋 本文目录如下: 🎁 🎁 🎁
💥1 概述
本代码说明了“最小二乘支持向量机”在学习偏微分方程 (PDE) 解方面的应用。提供了一个示例,并将获得的结果与精确的解决方案进行比较。
📚2 运行结果
部分代码:
clc; clear all; close all
warning('off','all')
a0=0;
b0=1;
n=11;
h=(b0-a0)/n;
[X1,Y1]=meshgrid(a0+h:h:b0-h);
W=[];
for i=1:size(X1,2)
Z=[X1(:,i),Y1(:,1)];
W=[W ; Z];
end
subplot(2,3,1)
plot(W(:,1),W(:,2),'o')
hold on
[X,Y]=meshgrid(a0:h:b0);
W2=[];
for i=1:size(X,2)
Z=[X(:,i),Y(:,1)];
W2=[W2 ; Z];
end
L1=[];
for i=1:n+1
L1=[L1 ; W2(i,:)];
end
L2=[];
for i=n*(n+1)+1:size(W2,1)
L2=[L2 ; W2(i,:)];
end
L3=[L1(:,2) L1(:,1)];
L4=[L2(:,2) L2(:,1)];
plot(L1(:,1),L1(:,2),'s')
plot(L2(:,1),L2(:,2),'o')
plot(L3(:,1),L3(:,2),'p')
plot(L4(:,1),L4(:,2),'+')
title('Training points','Fontsize',14)
xlabel('x')
ylabel('y')
%%
f=@(s,v) exp(-s).*(s-2+v.^3+6*v); % right hand side of the given PDE
gamma=10^14; % the regularization parameter
sig=0.95; % kernel bandwidth
K=KernelMatrix(W,'RBF_kernel',sig);
x=W(:,1);
y=W(:,2);
xx1=x*ones(1,size(x,1));
xx2=x*ones(1,size(x,1));
cof1=2*(xx1-xx2')/(sig);
xx3=y*ones(1,size(y,1));
xx4=y*ones(1,size(y,1));
cof2=2*(xx3-xx4')/(sig);
Kxx=(-2/sig)*K + (cof1.^2) .* K;
Kyy=(-2/sig)*K + (cof2.^2) .* K;
Kx2x2=( ( 12/(sig^2) - (12/sig)* (cof1.^2) + (cof1.^4) ) .*K);
Ky2y2=( ( 12/(sig^2) - (12/sig)* (cof2.^2) + (cof2.^4) ) .*K);
Kx2y2=( ( 4/(sig^2) - (2/sig)* (cof1.^2) - (2/sig)* (cof2.^2) + (cof1.^2).*(cof2.^2) ) .*K);
Ky2x2=( ( 4/(sig^2) - (2/sig)* (cof1.^2) - (2/sig)* (cof2.^2) + (cof1.^2).*(cof2.^2) ) .*K);
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1] Mehrkanoon S., Falck T., Suykens J.A.K., "Approximate Solutions to Ordinary Differential Equations Using Least Squares Support Vector Machines",IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 9, Sep. 2012, pp. 1356-1367.
[2] Mehrkanoon S., Suykens J.A.K.,"LS-SVM approximate solution to linear time varying descriptor systems", Automatica, vol. 48, no. 10, Oct. 2012, pp. 2502-2511.文章来源:https://www.toymoban.com/news/detail-522116.html
[3] Mehrkanoon S., Suykens J.A.K., "Learning Solutions to Partial Differential Equations using LS-SVM",Neurocomputing, vol. 159, Mar. 2015, pp. 105-116.文章来源地址https://www.toymoban.com/news/detail-522116.html
🌈4 Matlab代码实现
到了这里,关于最小二乘支持向量机”在学习偏微分方程 (PDE) 解方面的应用(Matlab代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!