分块矩阵常用运算

这篇具有很好参考价值的文章主要介绍了分块矩阵常用运算。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1分块矩阵的加法

分块矩阵的n次方公式,高等数学,矩阵,线性代数

2.分块矩阵的乘法

 分块矩阵的n次方公式,高等数学,矩阵,线性代数

 3.分块矩阵的转置

分块矩阵的n次方公式,高等数学,矩阵,线性代数

 4.分块矩阵的n次方(只适用于副对角线全部是零,主对角线是方阵)

分块矩阵的n次方公式,高等数学,矩阵,线性代数

 5.分块矩阵的逆矩阵求法

分块矩阵的n次方公式,高等数学,矩阵,线性代数

 文章来源地址https://www.toymoban.com/news/detail-522167.html

到了这里,关于分块矩阵常用运算的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【线性代数】从矩阵分块的角度理解矩阵乘法

    概念: 例: 1. 分块矩阵计算的数学步骤 使用Numpy计算例1 按列分块 按行分块 分块后的计算公式 矩阵分块法提供了行数和列数较多的矩阵相乘的一种计算方法,以此来简化矩阵相乘的运算次数; 按行列分块将矩阵A分为n个列向量和m个行向量,利用矩阵乘法的定义,殊途同归

    2024年02月13日
    浏览(59)
  • 高等数学:线性代数-第一章

    全排列 把 n 个不同的元素排成一列,叫做这 n 个元素的全排列,简称排列。 例如, { 5 , 3 , 4 , 2 , 1 } { 5, 3, 4, 2, 1 } { 5 , 3 , 4 , 2 , 1 } 是一个排列。 全排列的个数 记 P n P_{n} P n ​ 为 n 个元素的全排列的个数,则有 P n = n ! P_{n} = n! \\\\ P n ​ = n ! 排列数 记 P n m P_{n}^{m} P n m ​ 为从

    2024年02月11日
    浏览(44)
  • 高等数学:线性代数-第三章

    矩阵的初等变换 下面三种变换称为矩阵的初等变换 对换两行(列),记作 r i ↔ r j ( c i ↔ c j ) r_{i} leftrightarrow r_{j} (c_{i} leftrightarrow c_{j}) r i ​ ↔ r j ​ ( c i ​ ↔ c j ​ ) 以数 k ≠ 0 k ne 0 k  = 0 乘某一行(列)中的所有元,记作 r i × k ( c i × k ) r_{i} times k ( c_{i}

    2024年02月11日
    浏览(44)
  • 高等数学:线性代数-第二章

    n bm{n} n 元线性方程组 设有 n 个未知数 m 个方程的线性方程组 { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m begin{cases} a_{11}x_{1} + a_{12}x_{2} + cdots + a_{1n}x_{n} = b_{1} \\\\ a_{21}x_{1} + a_{22}x_{2} + cdots + a_{2n}x_{n} = b

    2024年02月11日
    浏览(38)
  • 线性代数|分块对角矩阵的定义和性质

    前置知识: 阶梯形行列式的性质 定义 设 A boldsymbol{A} A 为 n n n 阶方阵,若 A boldsymbol{A} A 的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即 A = ( A 1 O A 2 ⋱ O A s ) boldsymbol{A} = begin{pmatrix} boldsymbol{A}_1 boldsymbol{O} \\\\ boldsymbol{A}_

    2024年02月07日
    浏览(40)
  • 《python数学实验与建模》(2)高等数学与线性代数

    3.1 求下列积分的符号解 (1) ∫ 0 1 1 + 4 x   d x int_{0}^{1}sqrt{1+4x}~dx ∫ 0 1 ​ 1 + 4 x ​   d x (2) ∫ 0 + ∞ e − x sin ⁡ x   d x int_{0}^{+infty}e^{-x}sin x ~dx ∫ 0 + ∞ ​ e − x sin x   d x 结果: − 1 6 + 5 5 6 -frac{1}{6}+frac{5sqrt{5}}{6} − 6 1 ​ + 6 5 5 ​ ​ 1 2 frac{1}{2} 2 1 ​ 3.2 求方程 x

    2023年04月24日
    浏览(86)
  • 分块矩阵求逆推导 + 矩阵反演公式由来

    引自知乎:https://www.zhihu.com/question/47760591 David Sun 大佬的回答 其实也可以正面刚,下面从正面刚一下: 其实正面刚比上一种解法更简单! PS:啥时候Markdown 编辑公式能像Mathtype 那么方便就好了,这样笔者也不用先在word中编辑一遍再贴个图过来了。 注意到第一种分块矩阵求逆

    2024年02月07日
    浏览(39)
  • 高等数学:泰勒公式

    注:第三条 e x e^x e x 的展开式,在 1 1 1 和 + 1 2 x 2 +frac{1}{2}x^2 + 2 1 ​ x 2 之间添上一个 + x +x + x 。 1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + x 3 + ο ( x 3 ) , x ∈ ( − 1 , 1 ) . begin{aligned}frac{1}{1-x}=sum_{n=0}^infty x^n=1+x+x^2+x^3+omicron(x^3),xin(-1,1).end{aligned} 1 − x 1 ​ = n = 0 ∑ ∞ ​ x n =

    2024年02月13日
    浏览(27)
  • Python在高等数学和线性代数中的应用

    Python数学实验与建模学习 目录 1. SymPy工具库 1.1 符号运算基础 1.2 用SymPy做符号函数画图  2. 高等数学的符号解 2.1 极限 2.2 导数  2.3 级数求和  2.4 泰勒展开  2.5 不定积分和定积分  2.6 代数方程  2.7 微分方程  3. 高等数学问题的数值解 3.1 一重积分 3.1.1 梯形计算 3.1.2 辛普森

    2024年01月25日
    浏览(50)
  • 高等代数(七)-线性变换03:线性变换的矩阵

    § 3 § 3 §3 线性变换的矩阵 设 V V V 是数域 P P P 上 n n n 维线性空间, ε 1 , ε 2 , ⋯   , ε n varepsilon_{1}, varepsilon_{2}, cdots, varepsilon_{n} ε 1 ​ , ε 2 ​ , ⋯ , ε n ​ 是 V V V 的一组基, 现在我们来建立线性变换与矩阵的关系. 空间 V V V 中任一向量 ξ xi ξ 可以经 ε 1 , ε 2 , ⋯  

    2024年02月20日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包