机器学习18:训练神经网络-最佳实践

这篇具有很好参考价值的文章主要介绍了机器学习18:训练神经网络-最佳实践。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在【机器学习17】中,笔者介绍了反向传播算法。反向传播算法是神经网络最常见的训练算法。它使得梯度下降对于多层神经网络来说是可行的。 TensorFlow 可以自动处理反向传播,因此我们不需要深入了解该算法。要了解其工作原理,请阅读机器学习17文章来源地址https://www.toymoban.com/news/detail-522638.html

到了这里,关于机器学习18:训练神经网络-最佳实践的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习(四):4层BP神经网络(只用numpy不调包)用于训练鸢尾花数据集|准确率96%

    题目: 设计四层BP网络,以g(x)=sigmoid(x)为激活函数, 神经网络结构为:[4,10,6, 3],其中,输入层为4个节点,第一个隐含层神经元个数为10个节点;第二个隐含层神经元个数为6个节点,输出层为3个节点 利用训练数据iris-train.txt对BP神经网络分别进行训练,对训练后的模型统

    2023年04月08日
    浏览(35)
  • 基于TF-IDF+Tensorflow+pyQT+孪生神经网络的智能聊天机器人(深度学习)含全部工程源码及模型+训练数据集

    本项目利用TF-IDF(Term Frequency-Inverse Document Frequency 词频-逆文档频率)检索模型和CNN(卷积神经网络)精排模型构建了一个聊天机器人,旨在实现一个能够进行日常对话和情感陪伴的聊天机器人。 首先,我们使用TF-IDF技术构建了一个检索模型。TF-IDF可以衡量一个词语在文档中

    2024年02月12日
    浏览(60)
  • 基于TF-IDF+Tensorflow+PyQt+孪生神经网络的智能聊天机器人(深度学习)含全部Python工程源码及模型+训练数据集

    本项目利用TF-IDF(Term Frequency-Inverse Document Frequency 词频-逆文档频率)检索模型和CNN(卷积神经网络)精排模型构建了一个聊天机器人,旨在实现一个能够进行日常对话和情感陪伴的聊天机器人。 首先,我们使用TF-IDF技术构建了一个检索模型。TF-IDF可以衡量一个词语在文档中

    2024年02月13日
    浏览(53)
  • 精华整理几十个Python数据科学、机器学习、深度学习、神经网络、人工智能方面的核心库以及详细使用实战案例,轻松几行代码训练自己的专有人工智能模型

    精华整理几十个Python数据科学、机器学习、深度学习、神经网络、人工智能方面的核心库以及详细使用实战案例,轻松几行代码训练自己的专有人工智能模型。 机器学习 人工智能的核心,是使计算机具有智能的根本途径。机器学习专注于算法,允许机器学习而不需要编程,

    2024年01月25日
    浏览(71)
  • 深度学习实践——循环神经网络实践

    系列实验 深度学习实践——卷积神经网络实践:裂缝识别 深度学习实践——循环神经网络实践 深度学习实践——模型部署优化实践 深度学习实践——模型推理优化练习 代码可见于:https://download.csdn.net/download/weixin_51735061/88131380?spm=1001.2014.3001.5503 **方法:**实验主要通过pyt

    2024年02月15日
    浏览(35)
  • 深度学习DAY3:神经网络训练常见算法概述

    这是最常见的神经网络训练方法之一。它通过计算损失函数对权重的梯度,并沿着梯度的反方向更新权重,从而逐步减小损失函数的值。梯度下降有多个变种,包括随机梯度下降(SGD)和小批量梯度下降。 反向传播是一种基于链式法则的方法,用于计算神经网络中每个神经元

    2024年02月07日
    浏览(40)
  • 【机器学习】——深度学习与神经网络

    目录 引入 一、神经网络及其主要算法 1、前馈神经网络 2、感知器 3、三层前馈网络(多层感知器MLP) 4、反向传播算法 二、深度学习 1、自编码算法AutorEncoder 2、自组织编码深度网络 ①栈式AutorEncoder自动编码器 ②Sparse Coding稀疏编码 3、卷积神经网络模型(续下次) 拓展:

    2024年02月09日
    浏览(42)
  • 【机器学习】——神经网络与深度学习

    目录 引入 一、神经网络及其主要算法 1、前馈神经网络 2、感知器 3、三层前馈网络(多层感知器MLP) 4、反向传播算法 二、深度学习 1、自编码算法AutorEncoder 2、自组织编码深度网络 ①栈式AutorEncoder自动编码器 ②Sparse Coding稀疏编码 3、卷积神经网络模型(续下次) 拓展:

    2024年02月10日
    浏览(49)
  • 机器学习-有监督学习-神经网络

    向量版本 y = ⟨ w , x ⟩ + b y = langle w, x rangle + b y = ⟨ w , x ⟩ + b 懂得两者区别 激活函数,损失函数 感知机模型的本质是线性模型,再加上激活函数 训练数据、损失函数、梯度下降,小批量梯度下降 神经网络算法整体流程: 初始化网络 前向传播 计算损失 计算微分 梯度下

    2024年02月07日
    浏览(45)
  • 【机器学习】神经网络

    神经网络:一种计算模型,由大量的节点(或神经元)直接相互关联而构成。每个节点(除输入节点外)代表一种特定的输出函数(或者认为是运算),称为激励函数;每两个节点的连接都代表该信号在传输中所占的比重(即认为该信号对该节点的影响程度) 神经网络三要素:模型、策略

    2024年02月15日
    浏览(73)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包