基于OpenCV 和 Dlib 进行头部姿态估计

这篇具有很好参考价值的文章主要介绍了基于OpenCV 和 Dlib 进行头部姿态估计。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

写在前面


  • 工作中遇到,简单整理
  • 博文内容涉及基于 OpenCV 和 Dlib头部姿态评估的简单Demo
  • 理解不足小伙伴帮忙指正

庐山烟雨浙江潮,未到千般恨不消。到得还来别无事,庐山烟雨浙江潮。 ----《庐山烟雨浙江潮》苏轼


https://github.com/LIRUILONGS/Head-posture-detection-dlib-opencv-.git

实验项目以上传,只需 git 克隆,安装需要的 pytohn 包,就可以开始使用了,但是需要说明的是 Dlib 的基于 HOG特征和SVM分类器的人脸检测器很一般,很多脸都检测不到,实际情况中可以考虑使用深度学习模型来做关键点检测,然后评估姿态。可以查看文章末尾大佬的开源项目

实现效果

Demo
原图
基于OpenCV 和 Dlib 进行头部姿态估计,AI认知HarmonyOS笔记,opencv,计算机视觉,python,头部姿态评估,人脸朝向判断
基于OpenCV 和 Dlib 进行头部姿态估计,AI认知HarmonyOS笔记,opencv,计算机视觉,python,头部姿态评估,人脸朝向判断
特征点标记后
基于OpenCV 和 Dlib 进行头部姿态估计,AI认知HarmonyOS笔记,opencv,计算机视觉,python,头部姿态评估,人脸朝向判断
姿态标记
基于OpenCV 和 Dlib 进行头部姿态估计,AI认知HarmonyOS笔记,opencv,计算机视觉,python,头部姿态评估,人脸朝向判断
姿态对应的Yaw,Pitch,Roll 度数
基于OpenCV 和 Dlib 进行头部姿态估计,AI认知HarmonyOS笔记,opencv,计算机视觉,python,头部姿态评估,人脸朝向判断
基于OpenCV 和 Dlib 进行头部姿态估计,AI认知HarmonyOS笔记,opencv,计算机视觉,python,头部姿态评估,人脸朝向判断

步骤

三个主要步骤

人脸检测

人脸检测:引入人脸检测器 dlib.get_frontal_face_detector() 以检测包含人脸的图片,多个人脸会选择面积最大的人脸。

dlib.get_frontal_face_detector()dlib 库中的一个函数,用于获取一个基于HOG特征和SVM分类器的人脸检测器。该函数返回一个可以用于检测图像中人脸的对象。

具体来说,HOG(Histogram of Oriented Gradients,梯度方向直方图)是一种常用于图像识别中的特征描述子,SVM(Support Vector Machine,支持向量机)是一种常用的分类器。将HOG特征与SVM分类器结合起来,可以得到一个有效的人脸检测器。

在使用 dlib.get_frontal_face_detector()函数时,只需将待检测的图像作为参数传入,即可得到一个用于检测人脸的对象。一个Demo

import dlib
import cv2

# 读取图像
img = cv2.imread('image.jpg')

# 获取人脸检测器
detector = dlib.get_frontal_face_detector()

# 在图像中检测人脸
faces = detector(img)

# 输出检测到的人脸数
print("检测到的人脸数为:", len(faces))

面部特征点检测

面部特征点检测,利用预训练模型 shape_predictor_68_face_landmarks.dat 以人脸图像为输入,输出68个人脸特征点

shape_predictor_68_face_landmarks.dat 是基于 dlib 库中的人脸特征点检测模型,该模型使用了基于 HOG 特征和 SVM 分类器的人脸检测器来检测图像中的人脸,并使用回归算法来预测人脸的 68 个关键点位置。这些关键点包括眼睛、鼻子、嘴巴等部位,可以用于进行人脸识别、表情识别、姿态估计等应用。

这个模型文件可以在dlib的官方网站上下载。在使用它之前,需要安装dlib库并将模型文件加载到程序中。

predictor = dlib.shape_predictor(r".\shape_predictor_68_face_landmarks.dat")
姿势估计

姿势估计。在获得 68 个面部特征点后,选择部分特征点,通过 PnP算法计算姿势 Yaw、Pitch、Roll 度数

    (success, rotation_vector, translation_vector) = cv2.solvePnP(model_points, image_points, camera_matrix,
                                                                  dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE)

Yaw、Pitch、Roll 是用于描述物体或相机在三维空间中的旋转角度的术语,常用于姿态估计和姿态控制中。

  • Yaw(左右):绕垂直于物体或相机的轴旋转的角度,也称为偏航角。通常以 z 轴为轴进行旋转,正值表示逆时针旋转,负值表示顺时针旋转。
  • Pitch(上下):绕物体或相机的横轴旋转的角度,也称为俯仰角。通常以 x 轴为轴进行旋转,正值表示向上旋转,负值表示向下旋转。
  • Roll(弯曲):绕物体或相机的纵轴旋转的角度,也称为翻滚角。通常以 y 轴为轴进行旋转,正值表示向右旋转,负值表示向左旋转。

这三个角度通常以欧拉角的形式表示,可以用于描述物体或相机的姿态信息。在计算机视觉中,常用于人脸识别、动作捕捉、机器人控制等应用场景。

完整 Demo 代码

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@File    :   face_ypr_demo.py
@Time    :   2023/06/05 21:32:45
@Author  :   Li Ruilong
@Version :   1.0
@Contact :   liruilonger@gmail.com
@Desc    :   根据68个人脸关键点,获取人头部姿态评估
"""

# here put the import lib

import cv2
import numpy as np
import dlib
import math
import uuid

# 头部姿态检测(dlib+opencv)

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(r".\shape_predictor_68_face_landmarks.dat")
POINTS_NUM_LANDMARK = 68


# shape_predictor_68_face_landmarks.dat 是一个预训练的人脸关键点检测模型,可以用于识别人脸的68个关键点,如眼睛、鼻子、嘴巴等。这个模型可以被用于人脸识别、人脸表情分析、面部姿势估计等领域。
# 它是由dlib库提供的,可以在Python中使用。如果你想使用它,可以在dlib的官方网站上下载。

# 获取最大的人脸
def _largest_face(dets):
    """
    @Time    :   2023/06/05 21:30:37
    @Author  :   liruilonger@gmail.com
    @Version :   1.0
    @Desc    :   从一个由 dlib 库检测到的人脸框列表中,找到最大的人脸框,并返回该框在列表中的索
                如果只有一个人脸,直接返回
                 Args:
                   dets: 一个由 `dlib.rectangle` 类型的对象组成的列表,每个对象表示一个人脸框
                 Returns:
                   人脸索引
    """
    # 如果列表长度为1,则直接返回
    if len(dets) == 1:
        return 0
    # 计算每个人脸框的面积
    face_areas = [(det.right() - det.left()) * (det.bottom() - det.top()) for det in dets]
    import heapq
    # 找到面积最大的人脸框的索引
    largest_area = face_areas[0]
    largest_index = 0
    for index in range(1, len(dets)):
        if face_areas[index] > largest_area:
            largest_index = index
            largest_area = face_areas[index]
    # 打印最大人脸框的索引和总人脸数
    print("largest_face index is {} in {} faces".format(largest_index, len(dets)))

    return largest_index


def get_image_points_from_landmark_shape(landmark_shape):
    """
    @Time    :   2023/06/05 22:30:02
    @Author  :   liruilonger@gmail.com
    @Version :   1.0
    @Desc    :   从dlib的检测结果抽取姿态估计需要的点坐标
                 Args:
                   landmark_shape:  所有的位置点
                 Returns:
                   void
    """

    if landmark_shape.num_parts != POINTS_NUM_LANDMARK:
        print("ERROR:landmark_shape.num_parts-{}".format(landmark_shape.num_parts))
        return -1, None

    # 2D image points. If you change the image, you need to change vector

    image_points = np.array([
        (landmark_shape.part(17).x, landmark_shape.part(17).y),  # 17 left brow left corner
        (landmark_shape.part(21).x, landmark_shape.part(21).y),  # 21 left brow right corner
        (landmark_shape.part(22).x, landmark_shape.part(22).y),  # 22 right brow left corner
        (landmark_shape.part(26).x, landmark_shape.part(26).y),  # 26 right brow right corner
        (landmark_shape.part(36).x, landmark_shape.part(36).y),  # 36 left eye left corner
        (landmark_shape.part(39).x, landmark_shape.part(39).y),  # 39 left eye right corner
        (landmark_shape.part(42).x, landmark_shape.part(42).y),  # 42 right eye left corner
        (landmark_shape.part(45).x, landmark_shape.part(45).y),  # 45 right eye right corner
        (landmark_shape.part(31).x, landmark_shape.part(31).y),  # 31 nose left corner
        (landmark_shape.part(35).x, landmark_shape.part(35).y),  # 35 nose right corner
        (landmark_shape.part(48).x, landmark_shape.part(48).y),  # 48 mouth left corner
        (landmark_shape.part(54).x, landmark_shape.part(54).y),  # 54 mouth right corner
        (landmark_shape.part(57).x, landmark_shape.part(57).y),  # 57 mouth central bottom corner
        (landmark_shape.part(8).x, landmark_shape.part(8).y),  # 8 chin corner
    ], dtype="double")
    return 0, image_points


def get_image_points(img):
    """
    @Time    :   2023/06/05 22:30:43
    @Author  :   liruilonger@gmail.com
    @Version :   1.0
    @Desc    :   用dlib检测关键点,返回姿态估计需要的几个点坐标
                 Args:
                   
                 Returns:
                   void
    """

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 图片调整为灰色

    dets = detector(img, 0)

    if 0 == len(dets):
        print("ERROR: found no face")
        return -1, None
    largest_index = _largest_face(dets)
    face_rectangle = dets[largest_index]

    landmark_shape = predictor(img, face_rectangle)
    draw = im.copy()
    cv2.circle(draw, (landmark_shape.part(0).x, landmark_shape.part(0).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(1).x, landmark_shape.part(1).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(2).x, landmark_shape.part(2).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(3).x, landmark_shape.part(3).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(4).x, landmark_shape.part(4).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(5).x, landmark_shape.part(5).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(6).x, landmark_shape.part(6).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(7).x, landmark_shape.part(7).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(8).x, landmark_shape.part(8).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(9).x, landmark_shape.part(9).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(10).x, landmark_shape.part(10).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(11).x, landmark_shape.part(11).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(12).x, landmark_shape.part(12).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(13).x, landmark_shape.part(13).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(14).x, landmark_shape.part(14).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(15).x, landmark_shape.part(15).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(16).x, landmark_shape.part(16).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(17).x, landmark_shape.part(17).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(18).x, landmark_shape.part(18).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(19).x, landmark_shape.part(19).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(20).x, landmark_shape.part(20).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(21).x, landmark_shape.part(21).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(22).x, landmark_shape.part(22).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(23).x, landmark_shape.part(23).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(24).x, landmark_shape.part(24).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(25).x, landmark_shape.part(25).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(26).x, landmark_shape.part(26).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(27).x, landmark_shape.part(27).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(28).x, landmark_shape.part(28).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(29).x, landmark_shape.part(29).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(30).x, landmark_shape.part(30).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(31).x, landmark_shape.part(31).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(32).x, landmark_shape.part(32).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(33).x, landmark_shape.part(33).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(34).x, landmark_shape.part(34).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(35).x, landmark_shape.part(35).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(36).x, landmark_shape.part(36).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(37).x, landmark_shape.part(37).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(38).x, landmark_shape.part(38).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(39).x, landmark_shape.part(39).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(40).x, landmark_shape.part(40).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(41).x, landmark_shape.part(41).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(42).x, landmark_shape.part(42).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(43).x, landmark_shape.part(43).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(44).x, landmark_shape.part(44).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(45).x, landmark_shape.part(45).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(46).x, landmark_shape.part(46).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(47).x, landmark_shape.part(47).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(48).x, landmark_shape.part(48).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(49).x, landmark_shape.part(49).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(50).x, landmark_shape.part(50).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(51).x, landmark_shape.part(51).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(52).x, landmark_shape.part(52).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(53).x, landmark_shape.part(53).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(54).x, landmark_shape.part(54).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(55).x, landmark_shape.part(55).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(56).x, landmark_shape.part(56).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(57).x, landmark_shape.part(57).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(58).x, landmark_shape.part(58).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(59).x, landmark_shape.part(59).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(60).x, landmark_shape.part(60).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(61).x, landmark_shape.part(61).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(62).x, landmark_shape.part(62).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(63).x, landmark_shape.part(63).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(64).x, landmark_shape.part(64).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(65).x, landmark_shape.part(65).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(66).x, landmark_shape.part(66).y), 2, (0, 255, 0), -1)
    cv2.circle(draw, (landmark_shape.part(67).x, landmark_shape.part(67).y), 2, (0, 255, 0), -1)

    # 部分关键点特殊标记
    cv2.circle(draw, (landmark_shape.part(17).x, landmark_shape.part(17).y), 2, (0, 165, 255),
               -1)  # 17 left brow left corner
    cv2.circle(draw, (landmark_shape.part(21).x, landmark_shape.part(21).y), 2, (0, 165, 255),
               -1)  # 21 left brow right corner
    cv2.circle(draw, (landmark_shape.part(22).x, landmark_shape.part(22).y), 2, (0, 165, 255),
               -1)  # 22 right brow left corner
    cv2.circle(draw, (landmark_shape.part(26).x, landmark_shape.part(26).y), 2, (0, 165, 255),
               -1)  # 26 right brow right corner
    cv2.circle(draw, (landmark_shape.part(36).x, landmark_shape.part(36).y), 2, (0, 165, 255),
               -1)  # 36 left eye left corner
    cv2.circle(draw, (landmark_shape.part(39).x, landmark_shape.part(39).y), 2, (0, 165, 255),
               -1)  # 39 left eye right corner
    cv2.circle(draw, (landmark_shape.part(42).x, landmark_shape.part(42).y), 2, (0, 165, 255),
               -1)  # 42 right eye left corner
    cv2.circle(draw, (landmark_shape.part(45).x, landmark_shape.part(45).y), 2, (0, 165, 255),
               -1)  # 45 right eye right corner
    cv2.circle(draw, (landmark_shape.part(31).x, landmark_shape.part(31).y), 2, (0, 165, 255),
               -1)  # 31 nose left corner
    cv2.circle(draw, (landmark_shape.part(35).x, landmark_shape.part(35).y), 2, (0, 165, 255),
               -1)  # 35 nose right corner
    cv2.circle(draw, (landmark_shape.part(48).x, landmark_shape.part(48).y), 2, (0, 165, 255),
               -1)  # 48 mouth left corner
    cv2.circle(draw, (landmark_shape.part(54).x, landmark_shape.part(54).y), 2, (0, 165, 255),
               -1)  # 54 mouth right corner
    cv2.circle(draw, (landmark_shape.part(57).x, landmark_shape.part(57).y), 2, (0, 165, 255),
               -1)  # 57 mouth central bottom corner
    cv2.circle(draw, (landmark_shape.part(8).x, landmark_shape.part(8).y), 2, (0, 165, 255), -1)

    # 保存关键点标记后的图片
    cv2.imwrite('new_' + "KeyPointDetection.jpg", draw)

    return get_image_points_from_landmark_shape(landmark_shape)


def get_pose_estimation(img_size, image_points):
    """
    @Time    :   2023/06/05 22:31:31
    @Author  :   liruilonger@gmail.com
    @Version :   1.0
    @Desc    :   获取旋转向量和平移向量
                 Args:
                   
                 Returns:
                   void
    """

    # 3D model points.
    model_points = np.array([
        (6.825897, 6.760612, 4.402142),  # 33 left brow left corner
        (1.330353, 7.122144, 6.903745),  # 29 left brow right corner
        (-1.330353, 7.122144, 6.903745),  # 34 right brow left corner
        (-6.825897, 6.760612, 4.402142),  # 38 right brow right corner
        (5.311432, 5.485328, 3.987654),  # 13 left eye left corner
        (1.789930, 5.393625, 4.413414),  # 17 left eye right corner
        (-1.789930, 5.393625, 4.413414),  # 25 right eye left corner
        (-5.311432, 5.485328, 3.987654),  # 21 right eye right corner
        (2.005628, 1.409845, 6.165652),  # 55 nose left corner
        (-2.005628, 1.409845, 6.165652),  # 49 nose right corner
        (2.774015, -2.080775, 5.048531),  # 43 mouth left corner
        (-2.774015, -2.080775, 5.048531),  # 39 mouth right corner
        (0.000000, -3.116408, 6.097667),  # 45 mouth central bottom corner
        (0.000000, -7.415691, 4.070434)  # 6 chin corner
    ])
    # Camera internals

    focal_length = img_size[1]
    center = (img_size[1] / 2, img_size[0] / 2)
    camera_matrix = np.array(
        [[focal_length, 0, center[0]],
         [0, focal_length, center[1]],
         [0, 0, 1]], dtype="double"
    )

    dist_coeffs = np.array([7.0834633684407095e-002, 6.9140193737175351e-002, 0.0, 0.0, -1.3073460323689292e+000],
                           dtype="double")  # Assuming no lens distortion

    (success, rotation_vector, translation_vector) = cv2.solvePnP(model_points, image_points, camera_matrix,
                                                                  dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE)

    # print("Rotation Vector:\n {}".format(rotation_vector))
    # print("Translation Vector:\n {}".format(translation_vector))
    return success, rotation_vector, translation_vector, camera_matrix, dist_coeffs


def draw_annotation_box(image, rotation_vector, translation_vector, camera_matrix, dist_coeefs, color=(0, 255, 0),
                        line_width=2):
    """
    @Time    :   2023/06/05 22:09:14
    @Author  :   liruilonger@gmail.com
    @Version :   1.0
    @Desc    :   标记一个人脸朝向的3D框
                 Args:
                   
                 Returns:
                   void
    """

    """Draw a 3D box as annotation of pose"""
    point_3d = []
    rear_size = 10
    rear_depth = 0
    point_3d.append((-rear_size, -rear_size, rear_depth))
    point_3d.append((-rear_size, rear_size, rear_depth))
    point_3d.append((rear_size, rear_size, rear_depth))
    point_3d.append((rear_size, -rear_size, rear_depth))
    point_3d.append((-rear_size, -rear_size, rear_depth))

    front_size = 10
    # 高度
    front_depth = 10
    point_3d.append((-front_size, -front_size, front_depth))
    point_3d.append((-front_size, front_size, front_depth))
    point_3d.append((front_size, front_size, front_depth))
    point_3d.append((front_size, -front_size, front_depth))
    point_3d.append((-front_size, -front_size, front_depth))
    point_3d = np.array(point_3d, dtype=np.float32).reshape(-1, 3)

    # Map to 2d image points
    (point_2d, _) = cv2.projectPoints(point_3d,
                                      rotation_vector,
                                      translation_vector,
                                      camera_matrix,
                                      dist_coeefs)
    point_2d = np.int32(point_2d.reshape(-1, 2))

    # Draw all the lines
    cv2.polylines(image, [point_2d], True, color, line_width, cv2.LINE_AA)
    cv2.line(image, tuple(point_2d[1]), tuple(
        point_2d[6]), color, line_width, cv2.LINE_AA)
    cv2.line(image, tuple(point_2d[2]), tuple(
        point_2d[7]), color, line_width, cv2.LINE_AA)
    cv2.line(image, tuple(point_2d[3]), tuple(
        point_2d[8]), color, line_width, cv2.LINE_AA)


# 从旋转向量转换为欧拉角
def get_euler_angle(rotation_vector):
    """
    @Time    :   2023/06/05 22:31:52
    @Author  :   liruilonger@gmail.com
    @Version :   1.0
    @Desc    :   从旋转向量转换为欧拉角
                 Args:
                   
                 Returns:
                   void
    """

    # calculate rotation angles
    theta = cv2.norm(rotation_vector, cv2.NORM_L2)

    # transformed to quaterniond
    w = math.cos(theta / 2)
    x = math.sin(theta / 2) * rotation_vector[0][0] / theta
    y = math.sin(theta / 2) * rotation_vector[1][0] / theta
    z = math.sin(theta / 2) * rotation_vector[2][0] / theta

    ysqr = y * y
    # pitch (x-axis rotation)
    t0 = 2.0 * (w * x + y * z)
    t1 = 1.0 - 2.0 * (x * x + ysqr)

    # print('t0:{}, t1:{}'.format(t0, t1))
    pitch = math.atan2(t0, t1)

    # yaw (y-axis rotation)
    t2 = 2.0 * (w * y - z * x)
    if t2 > 1.0:
        t2 = 1.0
    if t2 < -1.0:
        t2 = -1.0
    yaw = math.asin(t2)

    # roll (z-axis rotation)
    t3 = 2.0 * (w * z + x * y)
    t4 = 1.0 - 2.0 * (ysqr + z * z)
    roll = math.atan2(t3, t4)

    print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll))

    # 单位转换:将弧度转换为度
    pitch_degree = int((pitch / math.pi) * 180)
    yaw_degree = int((yaw / math.pi) * 180)
    roll_degree = int((roll / math.pi) * 180)

    return 0, pitch, yaw, roll, pitch_degree, yaw_degree, roll_degree


def get_pose_estimation_in_euler_angle(landmark_shape, im_szie):
    try:
        ret, image_points = get_image_points_from_landmark_shape(landmark_shape)
        if ret != 0:
            print('get_image_points failed')
            return -1, None, None, None

        ret, rotation_vector, translation_vector, camera_matrix, dist_coeffs = get_pose_estimation(im_szie,
                                                                                                   image_points)
        if ret != True:
            print('get_pose_estimation failed')
            return -1, None, None, None

        ret, pitch, yaw, roll = get_euler_angle(rotation_vector)
        if ret != 0:
            print('get_euler_angle failed')
            return -1, None, None, None

        euler_angle_str = 'Pitch:{}, Yaw:{}, Roll:{}'.format(pitch, yaw, roll)
        print(euler_angle_str)
        return 0, pitch, yaw, roll

    except Exception as e:
        print('get_pose_estimation_in_euler_angle exception:{}'.format(e))
        return -1, None, None, None


def build_img_text_marge(img_, text, height):
    """
    @Time    :   2023/06/01 05:29:09
    @Author  :   liruilonger@gmail.com
    @Version :   1.0
    @Desc    :   生成文字图片拼接到 img 对象
                 Args:

                 Returns:
                   void
    """
    import cv2
    from PIL import Image, ImageDraw, ImageFont

    # 定义图片大小和背景颜色
    width = img_.shape[1]
    background_color = (255, 255, 255)

    # 定义字体、字号和颜色
    font_path = 'arial.ttf'
    font_size = 26
    font_color = (0, 0, 0)

    # 创建空白图片
    image = Image.new('RGB', (width, height), background_color)

    # 创建画笔
    draw = ImageDraw.Draw(image)

    # 加载字体
    font = ImageFont.truetype(font_path, font_size)

    # 写入文字
    text_width, text_height = draw.textsize(text, font)
    text_x = (width - text_width) // 2
    text_y = (height - text_height) // 2
    draw.text((text_x, text_y), text, font=font, fill=font_color)

    # 将Pillow图片转换为OpenCV图片
    image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)

    montage_size = (width, img_.shape[0])
    import imutils
    montages = imutils.build_montages([img_, image_cv], montage_size, (1, 2))

    # 保存图片
    return montages[0]


if __name__ == '__main__':
    from imutils import paths

    # for imagePath in paths.list_images("W:\\python_code\\deepface\\huge_1.jpg"):
    for imagePath in range(1):
        print(f"处理的图片路径为: {imagePath}")
        # Read Image
        im = cv2.imread("image.jpg")
        size = im.shape
        # 对图像进行缩放的操作
        if size[0] > 700:
            h = size[0] / 3
            w = size[1] / 3
            # 如果图像的高度大于700,就将其高度和宽度分别缩小为原来的1/3,然后使用双三次插值的方法进行缩放。最后返回缩放后的图像的大小。
            im = cv2.resize(im, (int(w), int(h)), interpolation=cv2.INTER_CUBIC)
            size = im.shape
        # 获取坐标点    
        ret, image_points = get_image_points(im)
        if ret != 0:
            print('get_image_points failed')
            continue

        ret, rotation_vector, translation_vector, camera_matrix, dist_coeffs = get_pose_estimation(size, image_points)

        if ret != True:
            print('get_pose_estimation failed')
            continue
        draw_annotation_box(im, rotation_vector, translation_vector, camera_matrix, dist_coeffs)
        cv2.imwrite('new_' + "draw_annotation_box.jpg", im)

        ret, pitch, yaw, roll, pitch_degree, yaw_degree, roll_degree = get_euler_angle(rotation_vector)

        draw = im.copy()
        # Yaw:

        if yaw_degree < 0:
            output_yaw = "left : " + str(abs(yaw_degree)) + " degrees"
        elif yaw_degree > 0:
            output_yaw = "right :" + str(abs(yaw_degree)) + " degrees"
        else:
            output_yaw = "No left or right"
        print(output_yaw)

        # Pitch:
        if pitch_degree > 0:
            output_pitch = "dow :" + str(abs(pitch_degree)) + " degrees"
        elif pitch_degree < 0:
            output_pitch = "up :" + str(abs(pitch_degree)) + " degrees"
        else:
            output_pitch = "No downwards or upwards"
        print(output_pitch)

        # Roll:
        if roll_degree < 0:
            output_roll = "bends to the right: " + str(abs(roll_degree)) + " degrees"
        elif roll_degree > 0:
            output_roll = "bends to the left: " + str(abs(roll_degree)) + " degrees"
        else:
            output_roll = "No bend  right or left."
        print(output_roll)

        # Initial status:
        if abs(yaw) < 0.00001 and abs(pitch) < 0.00001 and abs(roll) < 0.00001:
            cv2.putText(draw, "Initial ststus", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, .5, (0, 255, 0))
            print("Initial ststus")

        # 姿态检测完的数据写在对应的照片
        imgss = build_img_text_marge(im, output_yaw + "\n" + output_pitch + "\n" + output_roll, 200)
        cv2.imwrite('new_' + str(uuid.uuid4()).replace('-', '') + ".jpg", imgss)

博文部分内容参考

© 文中涉及参考链接内容版权归原作者所有,如有侵权请告知,这是一个开源项目,如果你认可它,不要吝啬星星哦 😃


https://blog.csdn.net/zhang2gongzi/article/details/124520896

https://github.com/JuneoXIE/

https://github.com/yinguobing/head-pose-estimation


© 2018-2023 liruilonger@gmail.com, All rights reserved. 保持署名-非商用-相同方式共享(CC BY-NC-SA 4.0)文章来源地址https://www.toymoban.com/news/detail-523015.html

到了这里,关于基于OpenCV 和 Dlib 进行头部姿态估计的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenCV实战(24)——相机姿态估计

    校准相机后,就可以将捕获的图像与物理世界联系起来。如果物体的 3D 结构是已知的,那么就可以预测物体如何投影到相机的传感器上,图像形成的过程由投影方程描述。当方程的大部分项已知时,就可以通过观察一些图像来推断其他元素 ( 2D 或 3D ) 的值。相机姿态估计就是

    2024年02月05日
    浏览(46)
  • Opencv之Aruco码的检测和姿态估计

    Aruco码是由宽黑色边框和确定其标识符(id)的内部二进制矩阵组成的正方形标记。它的黑色边框有助于其在图像中的快速检测,内部二进制编码用于识别标记和提供错误检测和纠正。单个aruco 标记就可以提供足够的对应关系,例如有四个明显的角点及内部的二进制编码,所以

    2024年02月02日
    浏览(47)
  • OpenCV与AI深度学习 | 使用单相机对已知物体进行3D位置估计

    本文来源公众号“ OpenCV与AI深度学习 ”,仅用于学术分享,侵权删,干货满满。 原文链接:使用单相机对已知物体进行3D位置估计         本文主要介绍如何使用单个相机对已知物体进行3D位置估计,并给出实现步骤。           在计算机视觉中,有很多方法可以找

    2024年03月15日
    浏览(49)
  • Python+OpenCV+OpenPose实现人体姿态估计(人体关键点检测)

    1、人体姿态估计简介 2、人体姿态估计数据集 3、OpenPose库 4、实现原理 5、实现神经网络 6、实现代码 人体姿态估计(Human Posture Estimation),是通过将图片中已检测到的人体关键点正确的联系起来,从而估计人体姿态。 人体关键点通常对应人体上有一定自由度的关节,比如颈、

    2024年02月04日
    浏览(46)
  • 简要介绍 | 基于深度学习的姿态估计技术

    注1:本文系“简要介绍”系列之一,仅从概念上对基于深度学习的姿态估计技术进行非常简要的介绍,不适合用于深入和详细的了解。 注2:\\\"简要介绍\\\"系列的所有创作均使用了AIGC工具辅助 姿态估计 是计算机视觉领域的一个重要研究方向,它主要关注如何从图像或视频中提

    2024年02月09日
    浏览(41)
  • 基于 pytorch-openpose 实现 “多目标” 人体姿态估计

    还记得上次通过 MediaPipe 估计人体姿态关键点驱动 3D 角色模型,虽然节省了动作 K 帧时间,但是网上还有一种似乎更方便的方法。MagicAnimate 就是其一,说是只要提供一张人物图片和一段动作视频 (舞蹈武术等),就可以完成图片人物转视频。 于是我就去官网体验了一下,发现

    2024年01月25日
    浏览(40)
  • 基于EKF的四旋翼无人机姿态估计matlab仿真

    目录 1.算法描述 2.仿真效果预览 3.MATLAB核心程序 4.完整MATLAB        卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全包含噪声的测量中,估计动态系统的状态。这种滤波方法以它的发明者鲁道夫·E·卡尔曼(Rudolf E. Kalman)命名。卡尔曼最初提

    2023年04月23日
    浏览(90)
  • PoseFormer:基于视频的2D-to-3D单人姿态估计

    论文链接:3D Human Pose Estimation with Spatial and Temporal Transformers 论文代码:https://github.com/zczcwh/PoseFormer 论文出处:2021 ICCV 论文单位:University of Central Florida, USA Transformer架构已经成为自然语言处理中的首选模型,现在正被引入到计算机视觉任务中,例如图像分类、对象检测和语义

    2024年02月04日
    浏览(48)
  • 基于OpenCV和Dlib的深度学习人脸识别技术实践与应用

    计算机视觉技术在当前人工智能发展进程中已然达到较高成熟度,一系列基础算法与应用场景获得广泛实践与验证。在算法层面,图像处理、目标检测、语义分割等多个领域的技术不断突破,准确率与效率持续提升。在应用上,人脸识别、车牌识别、医学图像分析等已步入商业化应

    2024年02月03日
    浏览(57)
  • 人体姿态估计和手部姿态估计任务中神经网络的选择

    一、 人体姿态估计 任务适合使用 卷积神经网络(CNN) 来解决。         人体姿态估计任务的目标是从给定的图像或视频中推断出人体的关节位置和姿势。这是一个具有挑战性的计算机视觉任务,而CNN在处理图像数据方面表现出色。         使用CNN进行人体姿态估计

    2024年02月05日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包