Python绘图制作混淆矩阵图--简易版(改矩阵参数就能运行)

这篇具有很好参考价值的文章主要介绍了Python绘图制作混淆矩阵图--简易版(改矩阵参数就能运行)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

#confusion_matrix
import numpy as np
import matplotlib.pyplot as plt
# classes = ['A','B','C','D','E']
# confusion_matrix = np.array([(9,1,3,4,0),(2,13,1,3,4),(1,4,10,0,13),(3,1,1,17,0),(0,0,0,1,14)],dtype=np.float64)


# 标签
classes=['Rice','Others']

classNamber=2 #类别数量

# 混淆矩阵
confusion_matrix = np.array([
    (67,24),
    (20,89)
    ],dtype=np.float64)

plt.imshow(confusion_matrix, interpolation='nearest', cmap=plt.cm.Blues)  #按照像素显示出矩阵
plt.title('confusion_matrix-SVM')#改图名
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=-45)
plt.yticks(tick_marks, classes)

thresh = confusion_matrix.max() / 2.
#iters = [[i,j] for i in range(len(classes)) for j in range((classes))]
#ij配对,遍历矩阵迭代器
iters = np.reshape([[[i,j] for j in range(classNamber)] for i in range(classNamber)],(confusion_matrix.size,2))
for i, j in iters:
    plt.text(j, i, format(confusion_matrix[i, j]),va='center',ha='center')   #显示对应的数字

plt.ylabel('Ture')
plt.xlabel('Prediction')
plt.tight_layout()
plt.show()


python混淆矩阵画图,Python,python,分类

 需要改的参数只有两个①你的类别数②混淆矩阵的数。运行结果如图所示。

当然,不喜欢蓝色也可以换颜色,如把代码中的Blues换成Reds等

python混淆矩阵画图,Python,python,分类

 是不是超级简单好用哈哈哈文章来源地址https://www.toymoban.com/news/detail-525366.html

到了这里,关于Python绘图制作混淆矩阵图--简易版(改矩阵参数就能运行)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python数据分析:混淆矩阵

    【小白从小学Python、C、Java】 【Python全国计算机等级考试】 【Python数据分析考试必会题】 ● 标题与摘要 Python数据分析 混淆矩阵 ● 选择题 以下关于混淆矩阵说法错误的是: A TP是被正确分类的正例个数 B FN是被错误分类的正例个数 C 主对角元素是不同类别样例被正确分类的

    2023年04月08日
    浏览(42)
  • 【论文必用】Python绘制混淆矩阵

      混淆矩阵的每一列代表了预测类别, 每一列的总数表示预测为该类别的数据的数目 ;每一行代表了数据的真实归属类别, 每一行的数据总数表示该类别的数据实例的数目 。每一列中的数值表示真实数据被预测为该类的数目。   以下图为例,第一行的数值总和为2+0+

    2023年04月24日
    浏览(54)
  • Python 使用numpy.bincount计算混淆矩阵

    Confusion matrix using numpy.bincount. np.bincount 用于统计一个非负数组中元素的出现次数。函数格式如下: 通常默认数组 x x

    2024年02月07日
    浏览(42)
  • Python手动输入混淆矩阵,并计算混淆矩阵的准确率、精确率、召回率、特异度、F1-score

    其中json格式的文件如下: {     \\\"0\\\": \\\"13\\\",     \\\"1\\\": \\\"18\\\",     \\\"2\\\": \\\"23\\\",     \\\"3\\\": \\\"28\\\",     \\\"4\\\": \\\"33\\\" } 可以按照以上格式(以5分类为例),先写在记事本上再更改后缀名 *注意最后一个后面没有 “,”  没有扩展名的看下面这个图给它调出来↓ 代码部分参考如下:  参考文献:使用

    2024年02月13日
    浏览(55)
  • 详细讲解分类模型评价指标(混淆矩阵)python示例

    对于回归模型的评估方法,通常会采用平均绝对误差(MAE)、均方误差(MSE)、平均绝对百分比误差(MAPE)等方法。 对于聚类模型的评估方法,较为常见的一种方法为轮廓系数(Silhouette Coefficient ),该方法从内聚度和分离度两个方面入手,用以评价相同数据基础上不同聚类

    2024年02月06日
    浏览(57)
  • 使用Python绘制混淆矩阵Confusion Matrix、自定义样式

    使用Python绘制混淆矩阵,原创,直接使用即可,样式可以自由变换。 混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用n行n列的矩阵形式来表示。具体评价指标有总体精度、制图精度、用户精度等,这些精度指标从不同的侧面反映了图像分类的精度。 直接上原创代

    2024年02月11日
    浏览(46)
  • 图像分类模型评估之用python绘制混淆矩阵confusion_matrix

    目录 训练完成后,生成混淆矩阵!!!! ImageNet数据格式,生成混淆矩阵!!!! 非 ImageNet数据格式,定义导入数据的类名和方法!!!! 非imageNet数据格式,完成生成混淆矩阵程序代码!!!! 混淆矩阵:是用于评估分类模型性能的一种常用工具,可以用于计算分类准确

    2024年02月01日
    浏览(54)
  • python︱使用python制作简易连点器

    当我们使用电脑的时候,不可避免的会碰到重复点击的任务。所以我们可以使用python制作一个简单的连点器进行使用,同时可以提升写代码的水平。 目录 第一步:前期准备 你需要一个可以编辑并运行python代码的程序 下载第三方库  第二步:整体思路 第三步:编写代码 1.导

    2024年02月14日
    浏览(39)
  • 怎么制作AI绘画?学会这几个技巧就能制作AI绘画,这些Python高级必会知识点你能答出来几个

    大家知道AI绘画吗?这是最近很火的一种绘画方式,我有时候能在社交平台上看到别人发出来的图画。问了才知道,这是通过人工智能软件制作出来的,只要提供画面的描述,AI就能根据这些词汇进行创作。所以即使是不会绘画的小伙伴也不用担心啦,我们通过这些软件

    2024年04月16日
    浏览(51)
  • Python制作简易OCR文字识别系统

    前不久看了一篇“如何使用Python检测和识别车牌?”用OpenCV对输入图像进行预处理,用imutils将原始输入图像裁剪成所需的大小,用pytesseract将提取车牌字符转换成字符串(车牌识别)。 但经实测,美式车牌识别基本正确,但中国92式车牌、新能源车牌识别基本失败,失败的现象

    2024年02月08日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包