matlab中数据归一化方法,矩阵归一化

这篇具有很好参考价值的文章主要介绍了matlab中数据归一化方法,矩阵归一化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

matlab中数据一行归一化

默认的map范围是[-1, 1],所以如果需要[0, 1],则按这样的格式提供参数
Data1 = mapminmax(lData, 0, 1);

矩阵归一化

data=[1,2,3;4,5,9];
data1 = data(:)'; % 展开矩阵为一列,然后转置为一行。
data2 = mapminmax(data1, 0, 1);% 归一化
data3 = reshape(data2, size(data));%还原为原始矩阵形式
disp(data3);

matlab矩阵归一化,matlab,matlab,矩阵,开发语言
matlab矩阵归一化,matlab,matlab,矩阵,开发语言文章来源地址https://www.toymoban.com/news/detail-525564.html

到了这里,关于matlab中数据归一化方法,矩阵归一化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Pytorch基础知识】数据的归一化和反归一化

    一张正常的图,或者说是人眼习惯的图是这样的: 但是,为了 神经网络更快收敛 ,我们在深度学习网络过程中 通常需要将读取的图片转为tensor并归一化 (此处的归一化指 transforms .Normalize()操作)输入到网络中进行系列操作。 如果将转成的tensor再直接转为图片,就会变成下

    2023年04月09日
    浏览(82)
  • 不要再搞混标准化与归一化啦,数据标准化与数据归一化的区别!!

    数据的标准化是将数据按照一定的 数学规则进行转换 ,使得数据满足特定的标准,通常是使数据满足正态分布或标准差为1的标准。 标准化的常见方法包括 最小-最大标准化 和 Z-score标准化 。最小-最大标准化将数据映射到 [0,1 ]的范围内,最小-最大标准化将数据映射到0-1区间

    2024年01月21日
    浏览(54)
  • 对复数数据实现归一化

    1、主要思路: 1)最大最小归一化,对模值进行 2)利用幅角转换为复数数据 实现代码 测试原理代码(基于numpy)

    2024年02月14日
    浏览(37)
  • 数据归一化常见算法

    数据归一化的几种方法 Min-Max归一化是一种线性的归一化方法。该方法将数据进行一次线性变换,将数据映射到[0,1]区间。Min-Max归一化不改变数据的分布。其缺点为,过度依赖最大最小数,且容易受到离群点、异常数据的影响。其公式为: x ′ = x − M i n M a x − M i n x^prime

    2024年02月12日
    浏览(36)
  • 使用阿里云试用Elasticsearch学习:3.3 处理人类语言——归一化词元

    把文本切割成词元(token)只是这项工作的一半。为了让这些词元(token)更容易搜索, 这些词元(token)需要被 归一化(normalization)–这个过程会去除同一个词元(token)的无意义差别,例如大写和小写的差别。可能我们还需要去掉有意义的差别, 让 esta、ésta 和 está 都能用同一个词元(to

    2024年04月14日
    浏览(41)
  • 深度学习输入数据的归一化

    将2D点坐标映射到[-1, 1]范围的主要原因有: 消除分辨率影响 不同图像分辨率下的绝对像素坐标值会有很大差异(例如100px和1000px)。映射到[-1, 1]可以抹平这种分辨率影响,使坐标值处在统一的数值范围内。 适合网络输入 大多数基于深度学习的模型会假设输入数据处在[-1, 1]或[0,

    2024年02月09日
    浏览(34)
  • OpenCV的函数normalize()的两个作用:调整矩阵的值范围(归一化处理)、规范化矩阵的范数为某个值

    OpenCV的函数normalize()的两个作用:调整矩阵的值范围(归一化处理)、规范化矩阵的范数为某个值 函数normalize()有两个原型: 原型一: 原型二: 原型一的适用对象是密集矩阵,通常我们的矩阵都是密集矩阵。 原型二的适用对象是稀疏矩阵,在这篇博文中暂不作介绍。 在介绍各参

    2024年02月06日
    浏览(42)
  • 数据标准化与归一化 及其区别

      数据一般都是有单位的,比如身高的单位有米、厘米等。需要对此类数值型特征进行 无量纲化处理 ,即是使不同规格的 数据转换到同一规格 。常见的无量纲化方法有 标准化 和 归一化 。 主要参考:机器学习算法:特征工程 某些算法要求样本具有0均值和1方差,即 需要

    2024年02月09日
    浏览(42)
  • 【知识---如何进行图像数据的归一化呢(normalize)】

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 在做基于图像的目标检测遇到了图像的归一化操作,为此展开了一定的探讨: 图像归一化是指对图像进行了一系列标准的处理变换,使之变换为一固定标准形式的过程,该标准图像称作归一化图像。 这

    2024年01月19日
    浏览(50)
  • 【机器学习】数据预处理 - 归一化和标准化

    「作者主页」: 士别三日wyx 「作者简介」: CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」: 对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 处理数据之前,通常会使用一些转换函数将 「特征数据」 转换成更适合 「

    2024年02月15日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包