【什么是 SAM】
近日,Meta AI在官网发布了基础模型 Segment Anything Model(SAM)并开源,其本质是用GPT的方式(基于Transform 模型架构)让计算机具备理解了图像里面的一个个“对象”的通用能力。SAM模型建立了一个可以接受文本提示、基于海量数据(603138)训练而获得泛化能力的图像分割大模型。图像分割是计算机视觉中的一项重要任务,有助于识别和确认图像中的不同物体,把它们从背景中分离出来,这在自动驾驶(检测其他汽车、行人和障碍物)、医学成像(提取特定结构或潜在病灶)等应用中特别重要。
官网:
Segment Anything | Meta AI
github:
GitHub - facebookresearch/segment-anything: The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.
官方论文:
https://arxiv.org/abs/2304.02643
【环境搭建】
首先将源码下载到pytorch环境中:
GitHub - facebookresearch/segment-anything: The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.
安装依赖库:
pip install opencv-python pycocotools matplotlib onnxruntime onnx
安装SAM
cd segment-anything
pip install -e .
下载权重文件:
下载三个权重文件中的一个,我用的第一个,三个模型从大到小,8G以下显存选vit_b。
default or vit_h: ViT-H SAM model.
vit_l: ViT-L SAM model.
vit_b: ViT-B SAM model.
【推理测试】
源码的 notebooks下面提供了测试代码和图片:
automatic_mask_generator_example.ipynb : 自动识别图片所有mask
predictor_example.ipynb :手动选取范围进行识别mask
onnx_model_example.ipynb : onnx格式模型工具
下面测试使用的 py 代码:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jupyter
jupyter nbconvert --to script predictor_example.ipynb
jupyter nbconvert --to script automatic_mask_generator_example.ipynb
测试代码中 matplotlib 库需要使用3.6以下的低版本这里选择3.5.3:
区别主要在于引入的Sam预测器:
from segment_anything import sam_model_registry, SamPredictor
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
SamPredictor => 需要传入一个抠图点坐标,也就是 input_point,会扣出包含抠图点的mask以及可能的父mask。
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=True,
)
代码如下:
import cv2
import matplotlib.pyplot as plt
import numpy as np
from segment_anything import sam_model_registry, SamPredictor
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white',
linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white',
linewidth=1.25)
if __name__ == '__main__':
# 配置,vit_h、vit_l、vit_b 从大到小,8G显存选 vit_b
sam_checkpoint = "C:\\workspace\\pycharm_workspace\\pytorch\\src\\segment-anything\\sam_vit_b_01ec64.pth"
# vit_h(default)、vit_l、vit_b
model_type = "vit_b"
# 模型实例化
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device="cuda")
predictor = SamPredictor(sam)
image = cv2.imread(r"C:\\workspace\\pycharm_workspace\\pytorch\\src\\segment-anything\\notebooks\\images\\truck.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
input_point = np.array([[500, 375]])
input_label = np.array([1])
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_points(input_point, input_label, plt.gca())
plt.axis('on')
plt.show()
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=True,
)
# 遍历读取每个扣出的结果
for i, (mask, score) in enumerate(zip(masks, scores)):
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(mask, plt.gca())
show_points(input_point, input_label, plt.gca())
plt.title(f"Mask {i + 1}, Score: {score:.3f}", fontsize=18)
plt.axis('off')
plt.show()
SamAutomaticMaskGenerator => 直接生成所有可能的mask
masks = mask_generator.generate(image)
代码如下:
import sys
sys.path.append("..")
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
import numpy as np
import torch
import matplotlib.pyplot as plt
import cv2
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
polygons = []
color = []
for ann in sorted_anns:
m = ann['segmentation']
img = np.ones((m.shape[0], m.shape[1], 3))
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
img[:,:,i] = color_mask[i]
ax.imshow(np.dstack((img, m*0.35)))
if __name__ == '__main__':
sam_checkpoint = "C:\\workspace\\pycharm_workspace\\pytorch\\src\\segment-anything\\sam_vit_b_01ec64.pth"
model_type = "vit_b"
device = "cuda"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
mask_generator = SamAutomaticMaskGenerator(sam)
image = cv2.imread('images/dog.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
masks = mask_generator.generate(image)
print(len(masks))
print(masks[0].keys())
plt.figure(figsize=(20, 20))
plt.imshow(image)
show_anns(masks)
plt.axis('off')
plt.show()
【模型导出onnx】
提供了一个onnx转换的脚本:
jupyter nbconvert --to script onnx_model_example.ipynb
同样修改一下权重类型和文件即可:
checkpoint = "C:\\workspace\\pycharm_workspace\\pytorch\\src\\segment-anything\\sam_vit_b_01ec64.pth"
model_type = "vit_b"
会生成两个onnx文件,quantized是量化过后的权重:
【onnx部署】java
下面是进行 java-onnx 部署的代码,见另外一篇文章:
http://t.csdn.cn/A07aE文章来源:https://www.toymoban.com/news/detail-526707.html
文章来源地址https://www.toymoban.com/news/detail-526707.html
到了这里,关于【Meta-AI】Sam-分割一切 测试的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!