NLP实战6:seq2seq翻译实战-Pytorch复现-小白版

这篇具有很好参考价值的文章主要介绍了NLP实战6:seq2seq翻译实战-Pytorch复现-小白版。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、前期准备

1. 搭建语言类

2. 文本处理函数

3. 文件读取函数

二、Seq2Seq 模型

1. 编码器(Encoder)

2. 解码器(Decoder)

三、训练

1. 数据预处理

2. 训练函数

四、训练与评估


🍨 本文为[🔗365天深度学习训练营]内部限免文章(版权归 *K同学啊* 所有)
🍖 作者:[K同学啊]

📌 本周任务:
●结合训练中N5周的内容理解本文代码

数据集:eng-fra.txt

NLP实战6:seq2seq翻译实战-Pytorch复现-小白版,nlp,自然语言处理,pytorch,人工智能

一、前期准备

from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import string
import re
import random

import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

cuda

1. 搭建语言类

定义了两个常量 SOS_token 和 EOS_token,其分别代表序列的开始和结束。 Lang 类,用于方便对语料库进行操作:
●word2index 是一个字典,将单词映射到索引
●word2count 是一个字典,记录单词出现的次数
●index2word 是一个字典,将索引映射到单词
●n_words 是单词的数量,初始值为 2,因为序列开始和结束的单词已经被添加

SOS_token = 0
EOS_token = 1

# 语言类,方便对语料库进行操作
class Lang:
    def __init__(self, name):
        self.name = name
        self.word2index = {}
        self.word2count = {}
        self.index2word = {0: "SOS", 1: "EOS"}
        self.n_words    = 2  # Count SOS and EOS

    def addSentence(self, sentence):
        for word in sentence.split(' '):
            self.addWord(word)

    def addWord(self, word):
        if word not in self.word2index:
            self.word2index[word] = self.n_words
            self.word2count[word] = 1
            self.index2word[self.n_words] = word
            self.n_words += 1
        else:
            self.word2count[word] += 1

2. 文本处理函数

def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
    )

# 小写化,剔除标点与非字母符号
def normalizeString(s):
    s = unicodeToAscii(s.lower().strip())
    s = re.sub(r"([.!?])", r" \1", s)
    s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
    return s

3. 文件读取函数

def readLangs(lang1, lang2, reverse=False):
    print("Reading lines...")

    # 以行为单位读取文件
    lines = open('%s-%s.txt'%(lang1,lang2), encoding='utf-8').\
            read().strip().split('\n')

    # 将每一行放入一个列表中
    # 一个列表中有两个元素,A语言文本与B语言文本
    pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines]

    # 创建Lang实例,并确认是否反转语言顺序
    if reverse:
        pairs       = [list(reversed(p)) for p in pairs]
        input_lang  = Lang(lang2)
        output_lang = Lang(lang1)
    else:
        input_lang  = Lang(lang1)
        output_lang = Lang(lang2)

    return input_lang, output_lang, pairs
MAX_LENGTH = 10      # 定义语料最长长度

eng_prefixes = (
    "i am ", "i m ",
    "he is", "he s ",
    "she is", "she s ",
    "you are", "you re ",
    "we are", "we re ",
    "they are", "they re "
)

def filterPair(p):
    return len(p[0].split(' ')) < MAX_LENGTH and \
           len(p[1].split(' ')) < MAX_LENGTH and p[1].startswith(eng_prefixes)

def filterPairs(pairs):
    # 选取仅仅包含 eng_prefixes 开头的语料
    return [pair for pair in pairs if filterPair(pair)]
def prepareData(lang1, lang2, reverse=False):
    # 读取文件中的数据
    input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse)
    print("Read %s sentence pairs" % len(pairs))
    
    # 按条件选取语料
    pairs = filterPairs(pairs[:])
    print("Trimmed to %s sentence pairs" % len(pairs))
    print("Counting words...")
    
    # 将语料保存至相应的语言类
    for pair in pairs:
        input_lang.addSentence(pair[0])
        output_lang.addSentence(pair[1])
        
    # 打印语言类的信息    
    print("Counted words:")
    print(input_lang.name, input_lang.n_words)
    print(output_lang.name, output_lang.n_words)
    return input_lang, output_lang, pairs

input_lang, output_lang, pairs = prepareData('eng', 'fra', True)
print(random.choice(pairs))

NLP实战6:seq2seq翻译实战-Pytorch复现-小白版,nlp,自然语言处理,pytorch,人工智能

二、Seq2Seq 模型

1. 编码器(Encoder)

class EncoderRNN(nn.Module):
    def __init__(self, input_size, hidden_size):
        super(EncoderRNN, self).__init__()
        self.hidden_size = hidden_size
        self.embedding   = nn.Embedding(input_size, hidden_size)
        self.gru         = nn.GRU(hidden_size, hidden_size)

    def forward(self, input, hidden):
        embedded       = self.embedding(input).view(1, 1, -1)
        output         = embedded
        output, hidden = self.gru(output, hidden)
        return output, hidden

    def initHidden(self):
        return torch.zeros(1, 1, self.hidden_size, device=device)

2. 解码器(Decoder)

class DecoderRNN(nn.Module):
    def __init__(self, hidden_size, output_size):
        super(DecoderRNN, self).__init__()
        self.hidden_size = hidden_size
        self.embedding   = nn.Embedding(output_size, hidden_size)
        self.gru         = nn.GRU(hidden_size, hidden_size)
        self.out         = nn.Linear(hidden_size, output_size)
        self.softmax     = nn.LogSoftmax(dim=1)

    def forward(self, input, hidden):
        output         = self.embedding(input).view(1, 1, -1)
        output         = F.relu(output)
        output, hidden = self.gru(output, hidden)
        output         = self.softmax(self.out(output[0]))
        return output, hidden

    def initHidden(self):
        return torch.zeros(1, 1, self.hidden_size, device=device)

三、训练

1. 数据预处理

def indexesFromSentence(lang, sentence):
    return [lang.word2index[word] for word in sentence.split(' ')]

# 将数字化的文本,转化为tensor数据
def tensorFromSentence(lang, sentence):
    indexes = indexesFromSentence(lang, sentence)
    indexes.append(EOS_token)
    return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)

# 输入pair文本,输出预处理好的数据
def tensorsFromPair(pair):
    input_tensor  = tensorFromSentence(input_lang, pair[0])
    target_tensor = tensorFromSentence(output_lang, pair[1])
    return (input_tensor, target_tensor)

2. 训练函数

teacher_forcing_ratio = 0.5

def train(input_tensor, target_tensor, 
          encoder, decoder, 
          encoder_optimizer, decoder_optimizer, 
          criterion, max_length=MAX_LENGTH):
    
    # 编码器初始化
    encoder_hidden = encoder.initHidden()
    
    # grad属性归零
    encoder_optimizer.zero_grad()
    decoder_optimizer.zero_grad()

    input_length  = input_tensor.size(0)
    target_length = target_tensor.size(0)
    
    # 用于创建一个指定大小的全零张量(tensor),用作默认编码器输出
    encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)

    loss = 0
    
    # 将处理好的语料送入编码器
    for ei in range(input_length):
        encoder_output, encoder_hidden = encoder(input_tensor[ei], encoder_hidden)
        encoder_outputs[ei]            = encoder_output[0, 0]
    
    # 解码器默认输出
    decoder_input  = torch.tensor([[SOS_token]], device=device)
    decoder_hidden = encoder_hidden

    use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
    
    # 将编码器处理好的输出送入解码器
    if use_teacher_forcing:
        # Teacher forcing: Feed the target as the next input
        for di in range(target_length):
            decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)
            
            loss         += criterion(decoder_output, target_tensor[di])
            decoder_input = target_tensor[di]  # Teacher forcing
    else:
        # Without teacher forcing: use its own predictions as the next input
        for di in range(target_length):
            decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)
            
            topv, topi    = decoder_output.topk(1)
            decoder_input = topi.squeeze().detach()  # detach from history as input

            loss         += criterion(decoder_output, target_tensor[di])
            if decoder_input.item() == EOS_token:
                break

    loss.backward()

    encoder_optimizer.step()
    decoder_optimizer.step()

    return loss.item() / target_length
import time
import math

def asMinutes(s):
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)

def timeSince(since, percent):
    now = time.time()
    s = now - since
    es = s / (percent)
    rs = es - s
    return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
def trainIters(encoder,decoder,n_iters,print_every=1000,
               plot_every=100,learning_rate=0.01):
    
    start = time.time()
    plot_losses      = []
    print_loss_total = 0  # Reset every print_every
    plot_loss_total  = 0  # Reset every plot_every

    encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
    decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
    
    # 在 pairs 中随机选取 n_iters 条数据用作训练集
    training_pairs    = [tensorsFromPair(random.choice(pairs)) for i in range(n_iters)]
    criterion         = nn.NLLLoss()

    for iter in range(1, n_iters + 1):
        training_pair = training_pairs[iter - 1]
        input_tensor  = training_pair[0]
        target_tensor = training_pair[1]

        loss = train(input_tensor, target_tensor, encoder,
                     decoder, encoder_optimizer, decoder_optimizer, criterion)
        print_loss_total += loss
        plot_loss_total  += loss

        if iter % print_every == 0:
            print_loss_avg   = print_loss_total / print_every
            print_loss_total = 0
            print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),
                                         iter, iter / n_iters * 100, print_loss_avg))

        if iter % plot_every == 0:
            plot_loss_avg = plot_loss_total / plot_every
            plot_losses.append(plot_loss_avg)
            plot_loss_total = 0

    return plot_losses

四、训练与评估

hidden_size   = 256
encoder1      = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = DecoderRNN(hidden_size, output_lang.n_words).to(device)

plot_losses = trainIters(encoder1, attn_decoder1, 100000, print_every=5000)

NLP实战6:seq2seq翻译实战-Pytorch复现-小白版,nlp,自然语言处理,pytorch,人工智能

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               # 忽略警告信息
# plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        # 分辨率

epochs_range = range(len(plot_losses))

plt.figure(figsize=(8, 3))

plt.subplot(1, 1, 1)
plt.plot(epochs_range, plot_losses, label='Training Loss')
plt.legend(loc='upper right')
plt.title('Training Loss')
plt.show()

NLP实战6:seq2seq翻译实战-Pytorch复现-小白版,nlp,自然语言处理,pytorch,人工智能文章来源地址https://www.toymoban.com/news/detail-526822.html

到了这里,关于NLP实战6:seq2seq翻译实战-Pytorch复现-小白版的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【文本摘要(2)】pytorch之Seq2Seq

    改废了两个代码后,又找到了一个文本摘要代码 终于跑起来了 改废的两个代码: 一个是机器翻译改文本摘要,结果没跑起来。。。 一个是英文文本摘要改中文文本摘要,预测的摘要全是,,,这种 代码参考: https://github.com/jasoncao11/nlp-notebook/tree/master/4-2.Seq2seq_Att 跪谢大佬

    2024年02月03日
    浏览(45)
  • 从零实现深度学习框架——带Attentiond的Seq2seq机器翻译

    本着“ 凡我不能创造的,我就不能理解 ”的思想,本系列文章会基于纯Python以及NumPy从零创建自己的深度学习框架,该框架类似PyTorch能实现自动求导。 要深入理解深度学习,从零开始创建的经验非常重要,从自己可以理解的角度出发,尽量不使用外部完备的框架前提下,实

    2024年02月15日
    浏览(96)
  • 机器学习&&深度学习——从编码器-解码器架构到seq2seq(机器翻译)

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——注意力提示、注意力池化(核回归) 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 接下来就要慢慢开始实战了,把这边过了,我们接下来就要进行机器翻译的实战

    2024年02月13日
    浏览(43)
  • pytorch中的词性标注_seq2seq_比较naive的示例

    一、各种用法_查漏补缺: 1.关于numpy中的argmax的用法: numpy之argmax()函数 - 知乎 (zhihu.com) 具体看这篇文章够了 二、代码+注释: 参考: Sequence Models and Long Short-Term Memory Networks — PyTorch Tutorials 2.0.1+cu117 documentation 01 序列模型和基于LSTM的循环神经网络 - 知乎 (zhihu.com)

    2024年02月09日
    浏览(31)
  • NLP-语义解析(Text2SQL):技术路线【Seq2Seq、模板槽位填充、中间表达、强化学习、图网络】

      目前关于NL2SQL技术路线的发展主要包含以下几种: Seq2Seq方法: 在深度学习的研究背景下,很多研究人员将Text-to-SQL看作一个类似神经机器翻译的任务,主要采取Seq2Seq的模型框架。基线模型Seq2Seq在加入Attention、Copying等机制后,能够在ATIS、GeoQuery数据集上达到84%的精确匹配,但是在

    2024年02月12日
    浏览(65)
  • LSTM实现多变量输入多步预测(Seq2Seq多步预测)时间序列预测(PyTorch版)

    💥项目专栏:【深度学习时间序列预测案例】零基础入门经典深度学习时间序列预测项目实战(附代码+数据集+原理介绍)

    2024年02月13日
    浏览(46)
  • 深度学习笔记之Seq2seq(二)基于Seq2seq注意力机制的动机

    上一节介绍了 Seq2seq text{Seq2seq} Seq2seq 网络常用的基本结构以及在 机器翻译 任务中,关于 目标函数 与 预测概率 的描述。本节依然以 机器翻译 任务为例,对 Seq2seq text{Seq2seq} Seq2seq 中的 注意力机制 ( Attention ) (text{Attention}) ( Attention ) 进行描述。 关于 机器翻译 任务的 Seq2

    2024年02月09日
    浏览(49)
  • Seq2Seq在安全领域的应用实践

    非常感谢您委托我撰写这篇专业的技术博客文章。作为一位世界级人工智能专家、程序员、软件架构师,我会遵循您提供的目标和约束条件,以专业的技术语言,结合深入的研究和准确的信息,为您呈现一篇内容丰富、结构清晰、实用价值高的技术博客文章。 下面我将开始正文的

    2024年04月28日
    浏览(35)
  • 构建seq2seq模型的常见问题

    1. seq2seq模型,输入是一个词向量,而不是词向量列表,对吧? 是的,对于seq2seq模型,输入和输出都需要被转换成词向量形式。 对于输入来说,通常会将一个句子转换成一个词向量序列。具体地,对于每个单词或者字符,都会将其对应成一个词向量,然后将所有词向量按照它

    2024年02月06日
    浏览(38)
  • 自然语言处理: 第四章Seq2Seq

    开始之前,首先提出一个问题,电脑是怎么识别人类的命令的,首先人们通过输入代码(编码) ,带入输入给计算机然后再经过处理(解码)得到最终的命令。所以可以看到这其实是一个编码 + 解码的过程。可以看到首先我们将初始的信息通过编码,得到涵盖全局的信息的特征然

    2024年02月12日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包