【FATE联邦学习】非分类、回归任务,如何获得联邦模型的输出?

这篇具有很好参考价值的文章主要介绍了【FATE联邦学习】非分类、回归任务,如何获得联邦模型的输出?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一般来说,从FATE框架中获得数据使用get_component('name').get_output_data()
但是这样子在目前的1.x的FATE中,只能以分类、回归的格式输出才能获得

如果是图片、文本、token embedding等,用这种方式根本拿不到模型的输出。

经过跟FATE社区人员交涉,社区肯定了这种方法拿不出。并且给了个方法,在自定义的trainer中的predict函数,直接保存输出。不在通过上述方法获得。

只能说现在只能先这样用了。

如何自定义trainer,在官方文档有。
trainer中的predict部分部分原代码如下,直接在这里面添加save model prediction就行:

def _predict(self, dataset: Dataset):

        pred_result = []

        # switch eval mode
        dataset.eval()
        self.model.eval()

        
        labels = []
				# 直接在这里save prediction
        pred = self.model(images)
        torch.save('./xxxx',pred)
        
        length=len(dataset.get_sample_ids())
        ret_rs = torch.rand(length,1)
        ret_label = torch.rand(length, 1).int()

        return dataset.get_sample_ids(), ret_rs, ret_label
        

    def predict(self, dataset: Dataset):

        ids, ret_rs, ret_label=self._predict(dataset)

        if self.fed_mode:
            return self.format_predict_result(
                ids, ret_rs, ret_label, task_type=self.task_type)
        else:
            return ret_rs, ret_label

在上述代码我返回了一些假的数据,因为如果返回数据的格式不符合,Fateboard会直接报错,无法进入到下一步。所以放在那里,没用。文章来源地址https://www.toymoban.com/news/detail-527895.html

到了这里,关于【FATE联邦学习】非分类、回归任务,如何获得联邦模型的输出?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习300问】16、逻辑回归模型实现分类的原理?

            在上一篇文章中,我初步介绍了什么是逻辑回归模型,从它能解决什么问题开始介绍,并讲到了它长什么样子的。如果有需要的小伙伴可以回顾一下,链接我放在下面啦:                              【机器学习300问】15、什么是逻辑回归模型?     

    2024年01月25日
    浏览(55)
  • 机器学习回归任务指标评价及Sklearn神经网络模型评价实践

    机器学习回归模型评价是指对回归模型的性能进行评估,以便选择最佳的回归模型。其中,MAE、MSE、RMSE 用于衡量模型预测值与真实值之间的误差大小,R² 用于衡量模型对数据的拟合程度。在实际应用中,我们可以使用这些指标来评估回归模型的性能,并对模型进行优化。

    2024年02月05日
    浏览(46)
  • 深入理解联邦学习——联邦学习的分类

    分类目录:《深入理解联邦学习》总目录 在实际中,孤岛数据具有不同分布特点,根据这些特点,我们可以提出相对应的联邦学习方案。下面,我们将以孤岛数据的分布特点为依据对联邦学习进行分类。 考虑有多个数据拥有方,每个数据拥有方各自所持有的数据集 D i D_i D

    2024年02月09日
    浏览(40)
  • 深度学习与逻辑回归模型的融合--TensorFlow多元分类的高级应用

    说到数字识别问题,这是一个分类问题,也就是我们要探讨的逻辑回归问题。逻辑回归是机器学习算法中非常经典的一种算法。 线性回归和逻辑回归的关系就是: 逻辑回归是广义的线性回归 。它们就是一个东西,只是范围不同。我在文章《深度学习在单线性回归方程中的应

    2024年02月04日
    浏览(49)
  • 机器学习 day24(多类分类模型,Softmax回归算法及其损失函数)

    1. 多类分类 多类分类问题仍然是分类问题,所以预测y的可能结果是少量的,而不是无穷多个,且对于多类分类它>2 如上图:左侧为二分类,右侧为多分类,可以通过决策边界来划分区域 2. Softmax回归算法 对逻辑回归模型,先计算z,再计算g(z)。此时可以将逻辑回归视为计算

    2024年02月13日
    浏览(41)
  • python机器学习——分类模型评估 & 分类算法(k近邻,朴素贝叶斯,决策树,随机森林,逻辑回归,svm)

    交叉验证:为了让被评估的模型更加准确可信 交叉验证:将拿到的数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。 通常情

    2024年02月03日
    浏览(65)
  • 每天五分钟计算机视觉:如何构造分类定位任务的算法模型?

    本节课程我们将学习分类定位的问题,也就是说不仅要完成图片分类任务,然后还要完成定位任务。如下所示,我们不仅要用算法判断图片中是不是一辆车,还要在图片中标记出它的位置,用边框对象圈起来,这就是 分类定位问题 。 一般可能会有一张图片对应多个对象,本

    2024年03月14日
    浏览(49)
  • 【MATLAB第56期】#源码分享 | 基于MATLAB的机器学习算法单输入多输出分类预测模型思路(回归改分类)

    针对单输入多输出分类预测,可采用回归的方式进行预测。 本文采用BP神经网络进行演示。 数据为1输入,5输出,总共482个样本。 输出分为五个指标,每个指标共4个评分维度,即【0 10 20 30】 保持样本均匀多样性,可将数据打乱。 若不需要打乱,上面代码改成: 训练样本数

    2024年02月17日
    浏览(33)
  • 【Python机器学习】决策树、逻辑回归、神经网络等模型对电信用户流失分类实战(附源码和数据集)

    需要源码和数据集请点赞关注收藏后评论区留言私信~~~ 该实例数据来自kaggle,它的每一条数据为一个用户的信息,共有21个有效字段,其中最后一个字段Churn标志该用户是否流失   可用pandas的read_csv()函数来读取数据,用DataFrame的head()、shape、info()、duplicated()、nunique()等来初步

    2024年02月03日
    浏览(46)
  • 如何向大模型ChatGPT提出问题以获得优质回答:基于AIGC和深度学习的实践指南

    提示工程 | 高性能计算 | ChatGPT 深度学习 | GPU服务器 |Ibrahim John 在当今信息爆炸的时代,人们对于知识获取的需求日益增长。特别是在深度学习、高性能计算和人工智能领域,这些前沿技术的不断发展让人们对其应用场景和实现方法有了更多的探索和研究。其中,作为一种基

    2024年02月04日
    浏览(62)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包