【图神经网络】GNNExplainer代码解读及其PyG实现

这篇具有很好参考价值的文章主要介绍了【图神经网络】GNNExplainer代码解读及其PyG实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

接上一篇博客图神经网络的可解释性方法及GNNexplainer代码示例,我们这里简单分析GNNExplainer源码,并用PyTorch Geometric手动实现。
GNNExplainer的源码地址:https://github.com/RexYing/gnn-model-explainer

使用GNNExplainer

(1)安装:

git clone https://github.com/RexYing/gnn-model-explainer

推荐使用python3.7以及创建虚拟环境:

virtualenv venv -p /usr/local/bin/python3
source venv/bin/activate

(2)训练一个GCN模型

python train.py --dataset=EXPERIMENT_NAME

其中EXPERIMENT_NAME表示想要复现的实验名称。

训练GCN模型的完整选项列表:

python train.py --help

(3)解释一个GCN模型
要运行解释器,请运行以下内容:

python explainer_main.py --dataset=EXPERIMENT_NAME

(4)可视化解释
使用Tensorboard:优化的结果可以通过Tensorboard可视化。

tensorboard --logdir log

GNNExplainer源码速读

GNNExplainer会从2个角度解释图:

  • 边(edge):会生成一个edge mask,表示每条边在图中出现的概率,值为0-1之间的浮点数。edge mask也可以当作一个权重,可以取topk的edge连成的子图来解释。
  • 结点特征(node feature):node feature(NF)即结点向量,比如一个结点128维表示128个特征,那么它同时会生成一个NF mask来表示每个特征的权重,这个可以不要。

【图神经网络】GNNExplainer代码解读及其PyG实现,复杂网络与图学习,GNNExplainer,可解释AI,PyG,可视化,mask

  • explainer目录下的ExplainModel类定义了GNNExplainer网络的模块结构,继承torch.nn.Module:

    • 在初始化init的时候,用construct_edge_maskconstruct_feat_mask函数初始化要学习的两个mask(分别对应于两个nn.Parameter类型的变量: n × n n×n n×n维的maskd维全0的feat_mask);diag_mask即主对角线上是0,其余元素均为1的矩阵,用于_masked_adj函数。
    • _masked_adj函数将mask用sigmod或ReLU激活后,加上自身转置再除以2,以转为对称矩阵,然后乘上diag_mask,最终将原邻接矩阵adj变换为masked_adj
  • Explainer类实现了解释的逻辑,主函数是其中的explain,用于解释原模型在单节点的预测结果,主要步骤:

    1. 取子图的adj, x, label图解释:取graph_idx对应的整个计算图;节点解释:调用extract_neighborhood函数取该节点num_gc_layers阶数的邻居。
    2. 将传入的模型预测输出pred转为pred_label
    3. 构建ExplainModule,进行num_epochs轮训练(前向+反向传播)
adj   = torch.tensor(sub_adj, dtype=torch.float)
x     = torch.tensor(sub_feat, requires_grad=True, dtype=torch.float)
label = torch.tensor(sub_label, dtype=torch.long)

if self.graph_mode:
	pred_label = np.argmax(self.pred[0][graph_idx], axis=0)
	print("Graph predicted label: ", pred_label)
else:
	pred_label = np.argmax(self.pred[graph_idx][neighbors], axis=1)
	print("Node predicted label: ", pred_label[node_idx_new])

explainer = ExplainModule(
	adj=adj,
	x=x,
	model=self.model,
	label=label,
	args=self.args,
	writer=self.writer,
	graph_idx=self.graph_idx,
	graph_mode=self.graph_mode,
)
if self.args.gpu:
	explainer = explainer.cuda()

...

# NODE EXPLAINER
def explain_nodes(self, node_indices, args, graph_idx=0):
...

def explain_nodes_gnn_stats(self, node_indices, args, graph_idx=0, model="exp"):
...

# GRAPH EXPLAINER
def explain_graphs(self, graph_indices):
...

explain_nodesexplain_nodes_gnn_statsexplain_graphs这三个函数都是在它的基础上实现的。

下面分析其中的forwardloss函数。

前向传播

首先把待学习的参数mask和feat_mask分别乘上原邻接矩阵和特征向量,得到变换后的masked_adjx。前者通过调用_masked_adj函数完成,后者的实现如下:

feat_mask = (
	torch.sigmoid(self.feat_mask)
	if self.use_sigmoid
	else self.feat_mask
)
if marginalize:
	std_tensor = torch.ones_like(x, dtype=torch.float) / 2
	mean_tensor = torch.zeros_like(x, dtype=torch.float) - x
	z = torch.normal(mean=mean_tensor, std=std_tensor)
	x = x + z * (1 - feat_mask)
else:
	x = x * feat_mask

完整代码如下:
【图神经网络】GNNExplainer代码解读及其PyG实现,复杂网络与图学习,GNNExplainer,可解释AI,PyG,可视化,mask
这里需要说明的是marginalize为True的情况,参考论文中的Learning binary feature selector F:
【图神经网络】GNNExplainer代码解读及其PyG实现,复杂网络与图学习,GNNExplainer,可解释AI,PyG,可视化,mask

  • 如果同mask一样学习feature_mask,在某些情况下回导致重要特征也被忽略(学到的特征遮罩也是接近于0的值),因此,依据 X S X_S XS的经验边缘分布使用Monte Carlo方法来抽样得到 X = X S F X=X_S^F X=XSF.
  • 为了解决随机变量 X X X的反向传播的问题,引入了"重参数化"的技巧,即将其表示为一个无参的随机变量 Z Z Z的确定性变换: X = Z + ( X S − Z ) ⊙ F X=Z+(X_S-Z)\odot F X=Z+(XSZ)F s . t . ∑ j F j ≤ K F s.t. \sum_{j}F_j\le K_F s.t.jFjKF
    其中, Z Z Z是依据经验分布采样得到的 d d d维随机变量, K F K_F KF是表示保留的最大特征数的参数(utils/io_utils.py中的denoise_graph函数)。

接着将masked_adjx输入原始模型得到ExplainModule结果pred

损失函数

loss = pred_loss + size_loss + lap_loss + mask_ent_loss + feat_size_loss

可知,总的loss包含五项,除了对应于论文中损失函数公式的pred_loss,其余各项损失的作用参考论文Integrating additional constraints into explanations,它们的权重定义在coeffs中:

self.coeffs = {
	"size": 0.005,
	"feat_size": 1.0,
	"ent": 1.0,
	"feat_ent": 0.1,
	"grad": 0,
	"lap": 1.0,
}

【图神经网络】GNNExplainer代码解读及其PyG实现,复杂网络与图学习,GNNExplainer,可解释AI,PyG,可视化,mask

  1. pred_loss
mi_obj = False
if mi_obj:
	pred_loss = -torch.sum(pred * torch.log(pred))
else:
	pred_label_node = pred_label if self.graph_mode else pred_label[node_idx]
	gt_label_node = self.label if self.graph_mode else self.label[0][node_idx]
	logit = pred[gt_label_node]
	pred_loss = -torch.log(logit)

其中pred是当前的预测结果,pred_label是原始特征上的预测结果。

  1. mask_ent_loss
# entropy
mask_ent = -mask * torch.log(mask) - (1 - mask) * torch.log(1 - mask)
mask_ent_loss = self.coeffs["ent"] * torch.mean(mask_ent)
  1. size_loss
# size
mask = self.mask
if self.mask_act == "sigmoid":
	mask = torch.sigmoid(self.mask)
elif self.mask_act == "ReLU":
	mask = nn.ReLU()(self.mask)
size_loss = self.coeffs["size"] * torch.sum(mask)
  1. feat_size_loss
# pre_mask_sum = torch.sum(self.feat_mask)
feat_mask = (
	torch.sigmoid(self.feat_mask) if self.use_sigmoid else self.feat_mask
)
feat_size_loss = self.coeffs["feat_size"] * torch.mean(feat_mask)
  1. lap_loss
# laplacian
D = torch.diag(torch.sum(self.masked_adj[0], 0))
m_adj = self.masked_adj if self.graph_mode else self.masked_adj[self.graph_idx]
L = D - m_adj
pred_label_t = torch.tensor(pred_label, dtype=torch.float)
if self.args.gpu:
	pred_label_t = pred_label_t.cuda()
	L = L.cuda()
if self.graph_mode:
	lap_loss = 0
else:
	lap_loss = (self.coeffs["lap"] * (pred_label_t @ L @ pred_label_t) / self.adj.numel())

【图神经网络】GNNExplainer代码解读及其PyG实现,复杂网络与图学习,GNNExplainer,可解释AI,PyG,可视化,mask

基于GNNExplainer图分类解释的PyG代码示例

对于图分类问题的解释,关键点有两个:

  • 要学习的Mask作用在整个图上,不用取子图
  • 标签预测和损失函数的对象是单个graph

实现代码如下:文章来源地址https://www.toymoban.com/news/detail-528314.html

#!/usr/bin/env python
# encoding: utf-8
# Created by BIT09 at 2023/4/28
import torch
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
from math import sqrt
from tqdm import tqdm
from torch_geometric.nn import MessagePassing
from torch_geometric.data import Data
from torch_geometric.utils import k_hop_subgraph, to_networkx

EPS = 1e-15


class GNNExplainer(torch.nn.Module):
    r"""
    Args:
        model (torch.nn.Module): The GNN module to explain.
        epochs (int, optional): The number of epochs to train.
            (default: :obj:`100`)
        lr (float, optional): The learning rate to apply.
            (default: :obj:`0.01`)
        log (bool, optional): If set to :obj:`False`, will not log any learning
            progress. (default: :obj:`True`)
    """

    coeffs = {
        'edge_size': 0.001,
        'node_feat_size': 1.0,
        'edge_ent': 1.0,
        'node_feat_ent': 0.1,
    }

    def __init__(self, model, epochs=100, lr=0.01, log=True, node=False):  # disable node_feat_mask by default
        super(GNNExplainer, self).__init__()
        self.model = model
        self.epochs = epochs
        self.lr = lr
        self.log = log
        self.node = node

    def __set_masks__(self, x, edge_index, init="normal"):
        (N, F), E = x.size(), edge_index.size(1)

        std = 0.1
        if self.node:
            self.node_feat_mask = torch.nn.Parameter(torch.randn(F) * 0.1)

        std = torch.nn.init.calculate_gain('relu') * sqrt(2.0 / (2 * N))
        self.edge_mask = torch.nn.Parameter(torch.randn(E) * std)
        self.edge_mask = torch.nn.Parameter(torch.zeros(E) * 50)

        for module in self.model.modules():
            if isinstance(module, MessagePassing):
                module.__explain__ = True
                module.__edge_mask__ = self.edge_mask

    def __clear_masks__(self):
        for module in self.model.modules():
            if isinstance(module, MessagePassing):
                module.__explain__ = False
                module.__edge_mask__ = None
        if self.node:
            self.node_feat_masks = None
        self.edge_mask = None

    def __num_hops__(self):
        num_hops = 0
        for module in self.model.modules():
            if isinstance(module, MessagePassing):
                num_hops += 1
        return num_hops

    def __flow__(self):
        for module in self.model.modules():
            if isinstance(module, MessagePassing):
                return module.flow
        return 'source_to_target'

    def __subgraph__(self, node_idx, x, edge_index, **kwargs):
        num_nodes, num_edges = x.size(0), edge_index.size(1)

        if node_idx is not None:
            subset, edge_index, mapping, edge_mask = k_hop_subgraph(
                node_idx, self.__num_hops__(), edge_index, relabel_nodes=True,
                num_nodes=num_nodes, flow=self.__flow__())
            x = x[subset]
        else:
            x = x
            edge_index = edge_index
            row, col = edge_index
            edge_mask = row.new_empty(row.size(0), dtype=torch.bool)
            edge_mask[:] = True
            mapping = None

        for key, item in kwargs:
            if torch.is_tensor(item) and item.size(0) == num_nodes:
                item = item[subset]
            elif torch.is_tensor(item) and item.size(0) == num_edges:
                item = item[edge_mask]
            kwargs[key] = item

        return x, edge_index, mapping, edge_mask, kwargs

    def __graph_loss__(self, log_logits, pred_label):
        loss = -torch.log(log_logits[0, pred_label])
        m = self.edge_mask.sigmoid()
        loss = loss + self.coeffs['edge_size'] * m.sum()
        ent = -m * torch.log(m + EPS) - (1 - m) * torch.log(1 - m + EPS)
        loss = loss + self.coeffs['edge_ent'] * ent.mean()

        return loss

    def visualize_subgraph(self, node_idx, edge_index, edge_mask, y=None,
                           threshold=None, **kwargs):
        r"""Visualizes the subgraph around :attr:`node_idx` given an edge mask
        :attr:`edge_mask`.

        Args:
            node_idx (int): The node id to explain.
            edge_index (LongTensor): The edge indices.
            edge_mask (Tensor): The edge mask.
            y (Tensor, optional): The ground-truth node-prediction labels used
                as node colorings. (default: :obj:`None`)
            threshold (float, optional): Sets a threshold for visualizing
                important edges. If set to :obj:`None`, will visualize all
                edges with transparancy indicating the importance of edges.
                (default: :obj:`None`)
            **kwargs (optional): Additional arguments passed to
                :func:`nx.draw`.

        :rtype: :class:`matplotlib.axes.Axes`, :class:`networkx.DiGraph`
        """

        assert edge_mask.size(0) == edge_index.size(1)

        if node_idx is not None:
            # Only operate on a k-hop subgraph around `node_idx`.
            subset, edge_index, _, hard_edge_mask = k_hop_subgraph(
                node_idx, self.__num_hops__(), edge_index, relabel_nodes=True,
                num_nodes=None, flow=self.__flow__())

            edge_mask = edge_mask[hard_edge_mask]
            subset = subset.tolist()
            if y is None:
                y = torch.zeros(edge_index.max().item() + 1,
                                device=edge_index.device)
            else:
                y = y[subset].to(torch.float) / y.max().item()
                y = y.tolist()
        else:
            subset = []
            for index, mask in enumerate(edge_mask):
                node_a = edge_index[0, index]
                node_b = edge_index[1, index]
                if node_a not in subset:
                    subset.append(node_a.item())
                if node_b not in subset:
                    subset.append(node_b.item())
            y = [y for i in range(len(subset))]

        if threshold is not None:
            edge_mask = (edge_mask >= threshold).to(torch.float)

        data = Data(edge_index=edge_index, att=edge_mask, y=y,
                    num_nodes=len(y)).to('cpu')
        G = to_networkx(data, edge_attrs=['att'])  # , node_attrs=['y']
        mapping = {k: i for k, i in enumerate(subset)}
        G = nx.relabel_nodes(G, mapping)

        kwargs['with_labels'] = kwargs.get('with_labels') or True
        kwargs['font_size'] = kwargs.get('font_size') or 10
        kwargs['node_size'] = kwargs.get('node_size') or 800
        kwargs['cmap'] = kwargs.get('cmap') or 'cool'

        pos = nx.spring_layout(G)
        ax = plt.gca()
        for source, target, data in G.edges(data=True):
            ax.annotate(
                '', xy=pos[target], xycoords='data', xytext=pos[source],
                textcoords='data', arrowprops=dict(
                    arrowstyle="->",
                    alpha=max(data['att'], 0.1),
                    shrinkA=sqrt(kwargs['node_size']) / 2.0,
                    shrinkB=sqrt(kwargs['node_size']) / 2.0,
                    connectionstyle="arc3,rad=0.1",
                ))
        nx.draw_networkx_nodes(G, pos, node_color=y, **kwargs)
        nx.draw_networkx_labels(G, pos, **kwargs)

        return ax, G

    def explain_graph(self, data, **kwargs):
        self.model.eval()
        self.__clear_masks__()
        x, edge_index, batch = data.x, data.edge_index, data.batch

        num_edges = edge_index.size(1)

        # Only operate on a k-hop subgraph around `node_idx`.
        x, edge_index, _, hard_edge_mask, kwargs = self.__subgraph__(node_idx=None, x=x, edge_index=edge_index,
                                                                     **kwargs)
        # Get the initial prediction.
        with torch.no_grad():
            log_logits = self.model(data, **kwargs)
            probs_Y = torch.softmax(log_logits, 1)
            pred_label = probs_Y.argmax(dim=-1)

        self.__set_masks__(x, edge_index)
        self.to(x.device)

        if self.node:
            optimizer = torch.optim.Adam([self.node_feat_mask, self.edge_mask],
                                         lr=self.lr)
        else:
            optimizer = torch.optim.Adam([self.edge_mask], lr=self.lr)

        epoch_losses = []
        for epoch in range(1, self.epochs + 1):
            epoch_loss = 0
            optimizer.zero_grad()
            if self.node:
                h = x * self.node_feat_mask.view(1, -1).sigmoid()

            log_logits = self.model(data, **kwargs)
            pred = torch.softmax(log_logits, 1)
            loss = self.__graph_loss__(pred, pred_label)
            loss.backward()

            optimizer.step()
            epoch_loss += loss.detach().item()
            epoch_losses.append(epoch_loss)

        edge_mask = self.edge_mask.detach().sigmoid()
        print(edge_mask)

        self.__clear_masks__()

        return edge_mask, epoch_losses

    def __repr__(self):
        return f'{self.__class__.__name__}()'

参考资料

  1. gnn-explainer
  2. 图神经网络的可解释性方法及GNNexplainer代码示例
  3. Pytorch实现GNNExplainer
  4. How to Explain Graph Neural Network — GNNExplainer
  5. https://gist.github.com/hongxuenong/9f7d4ce96352d4313358bc8368801707

到了这里,关于【图神经网络】GNNExplainer代码解读及其PyG实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 经典神经网络论文超详细解读(六)——DenseNet学习笔记(翻译+精读+代码复现)

    上一篇我们介绍了ResNet:经典神经网络论文超详细解读(五)——ResNet(残差网络)学习笔记(翻译+精读+代码复现) ResNet通过短路连接,可以训练出更深的CNN模型,从而实现更高的准确度。今天我们要介绍的是 DenseNet(《Densely connected convolutional networks》) 模型,它的基本

    2024年02月03日
    浏览(62)
  • 经典神经网络论文超详细解读(八)——ResNeXt学习笔记(翻译+精读+代码复现)

    今天我们一起来学习何恺明大神的又一经典之作:  ResNeXt(《Aggregated Residual Transformations for Deep Neural Networks》) 。这个网络可以被解释为 VGG、ResNet 和 Inception 的结合体,它通过重复多个block(如在 VGG 中)块组成,每个block块聚合了多种转换(如 Inception),同时考虑到跨层

    2024年02月03日
    浏览(55)
  • 神经网络的主要应用领域,神经网络技术及其应用

    神经网络原理及应用 1. 什么是神经网络? 神经网络是一种模拟动物神经网络行为特征,进行分布式并行信息处理的算法。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 人类的神经网络 2. 神经网络基础知识 构成:大

    2024年02月09日
    浏览(53)
  • 论文解读:在神经网络中提取知识(知识蒸馏)

    提高几乎所有机器学习算法性能的一种非常简单的方法是在相同的数据上训练许多不同的模型,然后对它们的预测进行平均[3]。不幸的是,使用整个模型集合进行预测是很麻烦的,并且可能在计算上过于昂贵,无法部署到大量用户,特别是如果单个模型是大型神经网络。Car

    2024年02月21日
    浏览(51)
  • 轻量级卷积神经网络MobileNets详细解读

    随着深度学习的飞速发展,计算机视觉领域内的卷积神经网络种类也层出不穷。从1998年的LeNet网络到2012引起深度学习热潮年的AlexNet网络,再到2014年的VGG网络,再到后来2015的ResNet网络,深度学习网络在图像处理上表现得越来越好。但是这些网络都在不断增加网络深度和宽度来

    2024年02月04日
    浏览(46)
  • BP神经网络理解及其MATLAB实现

    BP(Back Propagation)网络是一种 按误差逆传播 算法训练的多层前馈网络,是应用最广泛的神经网络模型之一。BP能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用 最速下降法 ,通过反向传播来不断调整网络的权值

    2024年02月06日
    浏览(55)
  • 神经网络自适应PID控制及其应用

    总结来自重庆大学宋永瑞教授2022暑期校园行学术会议   目前人工智能的发展为很多领域里的研究提供了可延展性,提供了新的研究问题的思路,无人系统和人工智能正走向深度融合,无人系统里具有核心驱动作用的智能控制算法的研究成为了热点问题。 人工智能的理论深

    2024年01月21日
    浏览(47)
  • 深度学习记录--神经网络表示及其向量化

    如下图 就这个神经网络图来说,它有三层,分别是 输入层 ( Input layer ), 隐藏层 ( Hidden layer ), 输出层 ( Output layer ) 对于其他的神经网络,隐藏层可以有很多层 一般来说,不把输入层算作一个标准的层,所以这是一个 双层神经网络 对于每一层的每个节点,以logistic为例,每

    2024年02月04日
    浏览(39)
  • 【环境搭建】MacOS系统M1芯片从零开始安装torch torch-geometric(PyG) torch-sparse torch-scatter步骤详解、配置图神经网络(GNN)训练环境教程

    前言:实际上只装PyTorch或者torch不会遇到什么问题,但是torch-geometric、torch-scatter、torch-sparse在M1 chip的Mac上非常难安装( PyG DocumentationInstallation 里注明了“Conda packages are currently not available for M1/M2/M3 macs”)。博主试错过程中遇到了很多无解的bug,还把conda搞炸了,最终不得不

    2024年02月02日
    浏览(46)
  • 可逆神经网络的研究及其在图像中应用

    一、摘要 可逆神经网络(INN)自被提出以来,就受到了广泛关注。由于其双射构造和高效可逆性,INN被用于各种推理任务,如图像隐藏、图像重缩放、图像着色、图像压缩和视频超分辨率等等。本文针对最新关于INN在图像方面应用的文献进行介绍,包括每篇文献的基本原理和个

    2024年02月06日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包