- 机器学习
- 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
- 机器学习有下面几种定义:
(1)机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。
(2)机器学习是对能通过经验自动改进的计算机算法的研究。
(3)机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。
- 监督学习
- 监督学习是我们将教计算机如何去完成任务。
- 利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。
- 无监督学习文章来源:https://www.toymoban.com/news/detail-528621.html
- 在无监督学习中,我们打算让它自己进行学习。
- 现实生活中常常会有这样的问题:缺乏足够的先验知识,因此难以人工标注类别或进行人工类别标注的成本太高。很自然地,我们希望计算机能代我们完成这些工作,或至少提供一些帮助。根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称之为无监督学习。
参考内容:
百度百科
吴恩达机器学习课程
机器学习笔记文章来源地址https://www.toymoban.com/news/detail-528621.html
到了这里,关于机器学习、监督学习、无监督学习基本概念的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!