基于人脸表情的情绪识别

这篇具有很好参考价值的文章主要介绍了基于人脸表情的情绪识别。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.前言

作为一个在人脸识别领域有一定经验的人,我在过去的项目中涉及了很多与人脸识别相关的任务。我整理了一些项目,但由于学业繁重,整理这些内容一直是断断续续的。最近正值五一假期,我想利用这个时间来整理一篇关于人脸表情识别的文章。这项技术可以识别出人的基本情绪,例如开心、悲伤等,具有广泛的应用价值。

2.相关工作

以我有限的知识来讲的话,基于人脸表情的情绪识别通常包括两个主要任务:人脸检测和人脸表情分类。人脸检测是指在输入图像中检测和定位人脸的位置和大小,为后续的表情识别提供基础数据;人脸表情分类是指将输入的人脸图像分为多个情感类别,例如愤怒、厌恶、恐惧、开心、伤心、惊讶和中性等。

人脸情绪识别,深度学习,计算机视觉,人工智能,opencv,图像处理

目前,人脸识别( Facial Recognition, FR)精度已经超过人眼,人脸表情识别作为FR技术的一个重要组成部分,在计算机视觉、人机交互和情感计算中有着广泛的研究前景,包括人机交互、情绪分析、智能安全、娱乐、网络教育、智能医疗等。人脸表情识别的主要框架分为三个步骤:图像预处理、人脸检测和表情分类,如图所示。

人脸情绪识别,深度学习,计算机视觉,人工智能,opencv,图像处理

本文采取Fer2013数据集,由35887张人脸图片组成,该数据集包含28709个训练样本,3859个验证样本和3859个测试样本。均为48×48的灰度图像。

人脸情绪识别,深度学习,计算机视觉,人工智能,opencv,图像处理

3.项目实现

3.1 OpenCV人脸检测

基于OpenCV的人脸检测算法是目前非常流行的一种实现方法,它通过使用级联分类器(Cascade Classifier)来检测图像中的人脸。下面是一个基于Python的人脸检测代码示例:

import cv2

# 加载级联分类器
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

# 加载图像并进行灰度化处理
img = cv2.imread('test.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 进行人脸检测
faces = face_cascade.detectMultiScale(gray, 1.3, 5)

# 绘制矩形框标识人脸位置
for (x,y,w,h) in faces:
    cv2.rectangle(img, (x,y), (x+w,y+h), (0,0,255), 2)

# 显示结果图像
cv2.imshow('result', img)
cv2.waitKey(0)

人脸检测就是用来判断一张图片中是否存在人脸的操作。如果图片中存在人脸,则定位该人脸在图片中的位置;如果图片中不存在人脸,则返回图片中不存在人脸的提示信息。人脸检测是表情识别中必不可少的环节,其检测效果的好坏,将直接影响整个系统的性能优劣。如图所示,蓝色矩形框代表了从图片中检测到的人脸图像位置。 

人脸情绪识别,深度学习,计算机视觉,人工智能,opencv,图像处理

 3.2Mini-Xception网络

本文表情分类的网络架构采用Mini-Xception卷积神经网络,其结构如图所示。其中包含4个残差深度可分离卷积块,每个卷积之后对卷积层进行批量归一化(BathNorm)操作及ReLu激活函数。最后一层采用全局平均池化层和softmax激活函数进行预测。

人脸情绪识别,深度学习,计算机视觉,人工智能,opencv,图像处理

 构造的mini-Xception网络模型,其优点在于删除了传统神经网络的全连接层并使用深度可分离卷积替代传统的卷积层,显著降低了训练参数量并缩短了训练时间,提高了模型的泛化能力。Mini-Xception网络的Python实现如下,具体采用Keras框架实现:

from keras.layers import Input, Conv2D, BatchNormalization, Activation, SeparableConv2D
from keras.layers import MaxPooling2D, GlobalAveragePooling2D, Dense, Dropout
from keras.models import Model

def mini_Xception(input_shape, num_classes):
    # 定义输入层
    inputs = Input(shape=input_shape)

    # 第一个卷积块
    x = Conv2D(8, (3, 3), strides=(1, 1), padding='same')(inputs)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)

    # 第二个卷积块
    x = SeparableConv2D(16, (3, 3), strides=(1, 1), padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = SeparableConv2D(16, (3, 3), strides=(1, 1), padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)

    # 第三个卷积块
    x = SeparableConv2D(32, (3, 3), strides=(1, 1), padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = SeparableConv2D(32, (3, 3), strides=(1, 1), padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)

    # 第四个卷积块
    x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
    x = Dropout(0.5)(x)
    x = SeparableConv2D(64, (3, 3), strides=(1, 1), padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = SeparableConv2D(64, (3, 3), strides=(1, 1), padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)

    # 第五个卷积块
    x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
    x = Dropout(0.5)(x)
    x = SeparableConv2D(128, (3, 3), strides=(1, 1), padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = SeparableConv2D(128, (3, 3), strides=(1, 1), padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)

    # 全局平均池化和输出层
    x = GlobalAveragePooling2D()(x)
    outputs = Dense(num_classes, activation='softmax')(x)

    # 创建模型
    model = Model(inputs=inputs, outputs=outputs)

    return model

4.实验结果与分析

4.1模型训练

本文的研究基于 Keras 深度学习框架搭建Mini-Xception模型,采用经预处理的Fer2013表情数据集进行模型训练。在训练结束后会将训练的模型保存为hdf5文件到指定文件夹下,训练过程结果输出如图。

人脸情绪识别,深度学习,计算机视觉,人工智能,opencv,图像处理

 4.2 结果分析

随着训练的不断进行,尽管其训练曲线不断波动,但训练集和验证集的准确率保持逐渐提升,最终两条曲线均达到平稳状态,得到的训练曲线如图所示。

人脸情绪识别,深度学习,计算机视觉,人工智能,opencv,图像处理

训练完成后,选取验证集准确率最佳的模型参数,最终在测试集进行测试验证。本文利用混淆矩阵对模型在测试集上的效果进行评估,其混淆矩阵的结果如图所示。Mini-Xception 对Happy的识别率可达92%,而对Scared的识别度最低仅为56%,可能是因为不同表情的数量不均衡导致。在识别过程中可以观察到,Sad和Scared, Angry和Disgust 的识别难度较大。

人脸情绪识别,深度学习,计算机视觉,人工智能,opencv,图像处理

 4.3 应用测试

为了更好应用于日常的表情识别场景,检测实际的表情识别性能,结合前面章节介绍的人脸检测和表情识别算法,设计了实际场景下的表情识别过程,其识别过程如图所示。

人脸情绪识别,深度学习,计算机视觉,人工智能,opencv,图像处理

首先获取图像并进行预处理,然后利用Haar级联分类器检测人脸位置,对人脸位置区域利用Mini-Xception进行表情识别,最终将表情识别的结果显示并输出。根据以上流程,本文基于PyQt5设计了表情识别系统界面。该系统界面如图19所示,其大致功能如下:

(1)可选择模型文件后基于该模型进行识别;

(2)打开摄像头识别实时画面中的人脸表情;

(3)选择一张人脸图片,对其中的表情进行识别。

人脸情绪识别,深度学习,计算机视觉,人工智能,opencv,图像处理文章来源地址https://www.toymoban.com/news/detail-529206.html

5.参考文献

  1. Zeng Z H, Pantic M, Roisman G I, et al. A survey of affect recognition methods: audio, visual, and spontaneous expressions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(1): 39-58.
  2. Ekman P, Friesen W V. Constants across cultures in the face and emotion[J]. Journal of Personality and Social Psychology, 1971, 17(2): 124-129.
  3. Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996, 29(1): 51-59.
  4. Albiol A, Monzo D, Martin A, et al. Face recognition using HOG – EBGM[J]. Pattern Recognition Letters, 2008, 29(10): 1537-1543.
  5. Viola P, Jones M J. Robust Real-Time Face Detection[J]. International Journal of Computer Vision, 2004, 57(2):137-154.
  6. Neubeck A, Gool L. Efficient Non-Maximum Suppression[C]// International Conference on Pattern Recognition. IEEE Computer Society, 2006.
  7. Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015. Boston, MA, USA. IEEE, 2015:1-9.
  8. Chollet F. Xception: deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017. Honolulu, HI. IEEE, 2017: 1800-1807.
  9. Wang M, Liu B, Foroosh H. Design of Efficient Convolutional Layers using Single Intra-channel Convolution, Topological Subdivisioning and Spatial “Bottleneck” Structure[EB/OL]. [2020-03-15]. http://arxiv.org/abs/1608.04337.
  10. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. 32nd International Conference on Machine Learning, ICML, 2015, 2015(1): 448-456.
  11. Goodfellow I J, Erhan D, Luc Carrier P, et al. Challenges in representation learning: a report on three machine learning contests[J]. Neural Networks, 2015(64): 59-63.
  12. Kingma D P, Ba J L. Adam: A method for stochastic optimization[J]. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015: 1-15.

到了这里,关于基于人脸表情的情绪识别的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于Python+OpenCV+dlib+Tensorflow深度学习的人脸表情识别系统

    欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。   人脸表情识别是一种重要的计算机视觉任务,它涉及到对人脸图像中的表情进行分类和理解。在这个系统中,我们将使用Python、OpenCV、dlib和Tensorflow来实现深度学习模型,以识别人脸表情。

    2024年02月01日
    浏览(45)
  • 计算机竞赛 基于深度学习的人脸性别年龄识别 - 图像识别 opencv

    🔥 优质竞赛项目系列,今天要分享的是 🚩 毕业设计 人脸性别年龄识别系统 - 图像识别 opencv 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https

    2024年02月10日
    浏览(95)
  • 基于深度学习的人脸性别年龄识别 - 图像识别 opencv 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 毕业设计 人脸性别年龄识别系统 - 图像识别 opencv 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https

    2024年02月06日
    浏览(67)
  • 深度学习之基于Tensorflow人脸面部表情识别系统

    欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。   基于Tensorflow的人脸面部表情识别系统是一种基于深度学习技术的图像处理应用,该系统主要通过人脸图像数据进行面部表情识别,并且识别准确度较高,其设计过程如下: 数据获取和处理

    2024年02月05日
    浏览(75)
  • 计算机竞赛 深度学习 python opencv 实现人脸年龄性别识别

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的人脸年龄性别识别算法实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分 工作量:4分 创新点:3分 🧿 更多资料, 项目分享: https://gitee

    2024年02月07日
    浏览(77)
  • 计算机竞赛 深度学习 机器视觉 人脸识别系统 - opencv python

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习 机器视觉 人脸识别系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.com/dancheng

    2024年02月07日
    浏览(83)
  • Pytorch实现基于深度学习的面部表情识别(最新,非常详细)

    基于深度学习的面部表情识别 (Facial-expression Recognition) 数据集cnn_train.csv包含人类面部表情的图片的label和feature。 在这里,面部表情识别相当于一个分类问题,共有7个类别。 其中label包括7种类型表情: 一共有28709个label,即包含28709张表情包。 每一行就是一张表情包4848=2304个

    2024年02月04日
    浏览(76)
  • 【深度学习】基于Qt的人脸识别系统,门禁人脸识别系统,Python人脸识别流程,树莓派

    在深度学习领域做人脸识别的识别准确率已经高到超出人类识别,但综合考虑模型复杂度(推理速度)和模型的识别效果,这个地方还是有做一些工作的需求的。 人脸识别的过程基本由下面的流程组成。 yolov5-face、yolov7-face等github项目都可以做到这一点,在公开数据集上训练

    2024年02月09日
    浏览(46)
  • 竞赛选题 基于深度学习的人脸识别系统

    🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的人脸识别系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 基于传统图像处理和机器学习技术的人脸识别技术,其中的流程都是一样的。 机器

    2024年02月07日
    浏览(71)
  • 毕设--基于深度学习的人脸识别(详细步骤+代码)

    最近闲来无事,想写一个本人毕设基于深度学习的人脸识别文章。我主要利用两个不同的神经网络进行实现,分别是一个简单三层的卷积神经网络和结构复杂的VGG16神经网络,并比对了两种网络训练出的模型的识别效果。从最终的结果来看,与预想的一样结构更复杂的VGG16的效

    2024年01月19日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包