R语言绘图丨论文中最常用箱线图绘制教程,自动进行显著性检验和误差线标注

这篇具有很好参考价值的文章主要介绍了R语言绘图丨论文中最常用箱线图绘制教程,自动进行显著性检验和误差线标注。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

多组比较式箱线图

在科研论文绘图中,对于多组数据进行比较一般采用箱线图的方法,今天分享一下这个经典数据可视化方法,从零开始绘制一张带误差棒并自动计算显著性比较结果的箱线图

R语言绘图丨论文中最常用箱线图绘制教程,自动进行显著性检验和误差线标注,后端

前言:箱线图有什么优势?

  • 数据分布信息:

箱线图能够直观地展示数据的分布情况,包括数据的中位数、上下四分位数和离群值。

  • 离群值检测:

箱线图可以帮助识别离群值,即与其他观测值明显不同的极端值,论文中使用箱线图可以帮助研究人员和读者快速识别和评估离群值的影响。

  • 比较分组数据:

箱线图可以同时显示多个组或条件的数据分布情况,使得不同组之间的比较更加直观,进而进行统计推断和假设检验。

  • 可视化简洁性:

箱线图以简洁直观的方式呈现数据分布,不需要过多的图形元素和细节。

箱线图的绘制方法

载入R包与数据

library(tidyverse)
library(ggsignif)
library(ggsci)
library(ggpubr)
# 使用随机测试数据
df <- data.frame(
    group = rep(c("A", "B", "C","D","E"), each = 20),
    value = c(rnorm(20, mean = 5, sd = 2),
              rnorm(20, mean = 7, sd = 1.5),
              rnorm(20, mean = 8, sd = 2),
              rnorm(20, mean = 4, sd = 1),
              rnorm(20, mean = 4.7, sd = 1.2)))
#使用自己的数据
df <- read.table("data.txt",header = T)

绘图所用数据很简单,分成两列,第一列是分组信息,第二列是具体的数值,如下所示:

> head(df)
  group    value
1     A 7.442960
2     A 3.582090
3     A 5.422412
4     A 3.891454
5     A 6.129032
6     A 3.011515

ggplot2绘图

使用以下代码即可绘制出一张箱线图,附带显著性标注和误差棒,直接可以放在论文中进行使用。

ggplot(df,aes(group,value))+
    stat_summary(fun.data = mean_sdl, 
                 fun.args = list(mult = 1), 
                 geom = "errorbar", 
                 width = 0.1,
                 size=0.8,
                 alpha=0.7)+
    geom_boxplot(aes(fill=group),coef = 1000000)+
    geom_signif(
        comparisons = list(
            c("A","B"),
            c("D","E")
        ), 
        map_signif_level = T, 
        test = "t.test", 
        vjust=0.1, 
        tip_length = 0.02 
        )+
    labs(x = "",y = "Value")+
    ylim(0,13)+
    theme_bw()+
    theme(
        legend.position = "none",
        axis.title = element_text(size = 15,face = "bold"),
        axis.text.x = element_text(size = 12,color = "black"),
        axis.title.y = element_text(size = 12,color = "black")
    )
ggsave("test.pdf",width = 10,height = 4)

R语言绘图丨论文中最常用箱线图绘制教程,自动进行显著性检验和误差线标注,后端

代码原理解释

ggplot(df, 
       aes(group, value))

创建一个基础的ggplot对象,其中df是数据框,group和value是数据框中的两个变量,用于指定x轴和y轴的数据。

stat_summary(fun.data = mean_sdl, 
             fun.args = list(mult = 1), 
             geom = "errorbar", 
             width = 0.1, 
             size = 0.8, 
             alpha = 0.7)

使用stat_summary函数对数据进行汇总统计,并绘制误差线。mean_sdl是用于计算均值和标准差的函数,fun.args参数用于传递给mean_sdl函数的参数,geom参数指定使用误差线图形,width参数指定误差线的宽度,size参数指定误差线的线条粗细,alpha参数指定误差线的透明度。

geom_boxplot(aes(fill = group), coef = 1000000)

使用geom_boxplot函数绘制箱线图,并根据group变量对箱线图进行分组。fill参数用于指定组别的填充颜色,coef参数用于调整箱线图的宽度。

geom_signif(comparisons = list(c("A", "B"), 
                               c("D", "E")), 
            map_signif_level = T, 
            test = "t.test", 
            vjust = 0.1, 
            tip_length = 0.02)

使用geom_signif函数在图形中添加显著性标记。comparisons参数指定要比较的组别,map_signif_level参数指定是否映射显著性水平,test参数指定使用的统计检验方法,vjust参数指定标记的垂直位置,tip_length参数指定标记的长度。

labs(x = "", y = "Value")

添加x轴和y轴的标签,其中x轴标签为空字符串,y轴标签为"Value"。

ylim(0, 13)

设置y轴的坐标范围为0到13。

theme_bw()+
theme(legend.position = "none", 
      axis.title = element_text(size = 15, face = "bold"), 
      axis.text.x = element_text(size = 12, color = "black"), 
      axis.title.y = element_text(size = 12, color = "black"))

设置图形的主题样式为白色,其中legend.position参数设置图例的位置为"none",axis.title参数设置坐标轴标题的样式,axis.text.x参数设置x轴标签的样式,axis.title.y参数设置y轴标题的样式。

本文由mdnice多平台发布文章来源地址https://www.toymoban.com/news/detail-529488.html

到了这里,关于R语言绘图丨论文中最常用箱线图绘制教程,自动进行显著性检验和误差线标注的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Matlab论文插图绘制模板第69期—带误差棒的折线图(Errorbar)

    在之前的文章中,分享了一系列 Matlab折线图 的绘制模板: 这一次,再来分享一种特殊的折线图: 带误差棒的折线图 。 先来看一下成品效果: 特别提示 :Matlab论文插图绘制模板系列, 旨在降低大家使用Matlab进行科研绘图的门槛 ,只需按照模板格式添加相应内容,即可得到

    2024年02月06日
    浏览(43)
  • R语言绘制箱线图(Box plot)

    今天要给大家分享的是如何用R语言绘制箱线图(Box plot)。 箱线图 (Box plot)是在科研中出现频率非常高的一类图,它主要由5个部分组成:极小值、下四分位数、中位数、上四分位数、极大值。箱线图能够很好的展示数据的分布特征,可以通过箱线图判断一组数据是否呈对

    2024年02月03日
    浏览(35)
  • R语言的ggplot2绘制分组折线图?

    R绘制分组折线图.R 首先看数据情况:group有3组。Time有3组,数据意思是在3组3个时间点测量了某指标,现在要绘制组1、组2、组3某指标y按时间的变化趋势 数据情况: 看看最终的效果图如下: 下面是本次使用的代码 .libPaths () setwd ( \\\"C:/Users/12974/Desktop/百度经验/03图形绘制/03R绘

    2024年01月22日
    浏览(40)
  • SPSS教程:如何绘制带误差的折线图

    研究者想研究45-65岁健康男性中,静坐时长和血胆固醇水平的关系,故招募100名研究对象询问其每天静坐时长(time),并检测其血液中胆固醇水平(cholesterol),部分数据如图1。 研究者该如何绘图展示这两者间的关系呢?   图1 部分数据 研究者想绘图展示健康中年男性中血

    2024年02月10日
    浏览(27)
  • 【R语言(二):Nomogram(诺莫图/列线图)绘制 / R语言逻辑回归分析】

    1、基本概念 Nomogram,中文常称为诺莫图或者列线图。简单的说是将Logistic回归或Cox回归的结果进行可视化呈现。它根据所有自变量回归系数的大小来制定评分标准,给每个自变量的每个取值水平一个评分;对于每个患者,就可计算得到一个总分,再通过得分与结局发生概率之

    2024年02月15日
    浏览(45)
  • SCI科研论文配图插图绘制推荐-博图汇科研绘图

    科研论文 期刊封面图、摘要图、图文摘要(Graphical Abstract)、TOC图(Table of Contents)、插图、配图、原理图、示意图、机制图、数据图等的设计和绘制 ,将科研学者的idea、概念、原理等以图表的形式展现出来,将艺术审美与严谨的科研相结合。

    2024年02月16日
    浏览(47)
  • R语言绘图:绘制横向柱状图

    代码主要实现: 对数据进行排序,并且相同分组的数据会有相同的颜色。最后,绘制横向柱状图。 结果展示:

    2024年04月16日
    浏览(32)
  • 【100天精通Python】Day65:Python可视化_Matplotlib3D绘图mplot3d,绘制3D散点图、3D线图和3D条形图,示例+代码

      mpl_toolkits.mplot3d 是 Matplotlib 库中的一个子模块,用于绘制和可视化三维图形,包括三维散点图、曲面图、线图等。它提供了丰富的功能来创建和定制三维图形。以下是 mpl_toolkits.mplot3d 的主要功能和功能简介: 3D 散点图 :通过 scatter 函数,你可以绘制三维散点图,用于显示

    2024年02月07日
    浏览(56)
  • 【Python数据可视化】matplotlib之绘制常用图形:折线图、柱状图(条形图)、饼图和直方图

    文章传送门 Python 数据可视化 matplotlib之绘制常用图形:折线图、柱状图(条形图)、饼图和直方图 matplotlib之设置坐标:添加坐标轴名字、设置坐标范围、设置主次刻度、坐标轴文字旋转并标出坐标值 matplotlib之增加图形内容:设置图例、设置中文标题、设置网格效果 matplo

    2024年01月16日
    浏览(57)
  • Pyecharts教程(十三):使用pyecharts绘制K线图并设置ItemStyle的讲解

    作者:安静到无声 个人主页 K线图是用于展示股票或其他金融产品价格走势的图表之一。在本文中,我们将使用pyecharts库来生成K线图,并通过设置ItemStyle来自定义K线和蜡烛图的样式。 引入所需的库和模块:

    2024年02月11日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包