机器学习笔记 - 局部敏感哈希简介

这篇具有很好参考价值的文章主要介绍了机器学习笔记 - 局部敏感哈希简介。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、算法简述

        局部敏感散列 (LSH) 技术,可显著加快对数据的邻居搜索或近似重复检测。例如,这些技术可用于以惊人的速度过滤掉抓取网页的重复项,或者从地理空间数据集中对附近点执行近恒定时间查找。

机器学习笔记 - 局部敏感哈希简介,机器学习,深度学习,局部敏感哈希,LSH,相似性度量,算法

         让我们快速回顾一下其他类型的哈希函数,哈希函数的传统用途是在哈希表中。哈希表中使用的哈希函数旨在将一段数据映射到一个整数,该整数可用于在哈希表中的特定存储桶中查找以检索或删除该元素。许多带有字符串键的容器(例如 JavaScript 对象或 Python 字典)都基于哈希表。尽管哈希表可能无法保证常时查找,但实际上它们有效地提供了这些查找。

        还有其他类的哈希函数。例如,SHA-1加密哈希函数设计为难以反转,如果要将某人的密码存储为哈希值,这将非常有用。像这样的哈希函数称为加密哈希函数。

        哈希函数通常具有以下关键属性:

        1、它们将某种类型的输入(如字符串或浮点数)映射到离散值(如整数)。

        2、它们的设计使两个输入将导致基于输入的关键属性的不同或相同的哈希输出。

        LSH 的适用方式如下:对位置敏感的哈希函数经过专门设计,因此对于两个靠近的输入值,哈希值冲突的可能性比距离很远输入值更有可能发生。正如对于不同的用例,安全哈希函数有不同的实现一样&#x文章来源地址https://www.toymoban.com/news/detail-529970.html

到了这里,关于机器学习笔记 - 局部敏感哈希简介的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 李宏毅《机器学习 深度学习》简要笔记(一)

    一、线性回归中的模型选择 上图所示: 五个模型,一个比一个复杂,其中所包含的function就越多,这样就有更大几率找到一个合适的参数集来更好的拟合训练集。所以,随着模型的复杂度提高,train error呈下降趋势。 上图所示: 右上角的表格中分别体现了在train和test中的损

    2024年01月25日
    浏览(43)
  • 机器学习笔记 - 什么是多模态深度学习?

            人类使用五种感官来体验和解释周围的世界。我们的五种感官从五种不同的来源和五种不同的方式捕获信息。模态是指某事发生、经历或捕捉的方式。         人工智能正在寻求模仿人类大脑,终究是跳不出这具躯壳的限制。         人脑由可以同时处理

    2024年02月09日
    浏览(41)
  • 《零基础实践深度学习》(第2版)学习笔记,(二)机器学习和深度学习综述

    **人工智能(Artificial Intelligence,AI)**是研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 **机器学习(Machine Learning,ML)**是当前比较有效的一种实现人工智能的方式。 **深度学习(Deep Learning,DL)**是机器学习算法中最热门的一个分

    2024年02月13日
    浏览(41)
  • 机器学习笔记 - 基于C++的​​深度学习 一、向量运算

            由于它们的可扩展性和灵活性,现在很少找到不使用TensorFlow、PyTorch、Paddle......(这里的省略号是指各种成熟的深度学习库)的项目。          花时间从头开始编写机器学习算法(即在没有任何基础框架的情况下)似乎有些重复造轮子的感觉。然而,事实并非

    2024年02月13日
    浏览(40)
  • 机器学习笔记 - 深度学习在网球运动分析上的应用

            观看网球比赛时,您可以根据中间或角落的发球次数、球的深度、向左或向右的偏好来自动丰富视图,具体取决于球员所处的位置。此类统计数据可以通过 Hawk-Eye、IBM Slamtracker 等工具提供。         Hawk-Eye 是一个复杂的系统,由多达 10 个高速摄像头组成,能

    2024年02月16日
    浏览(44)
  • 机器学习笔记 - 基于C++的​​深度学习 三、实现成本函数

            作为人工智能工程师,我们通常将每个任务或问题定义为一个函数。         例如,如果我们正在开发面部识别系统,我们的第一步是将问题定义为将输入图像映射到标识符的函数F( X )。但是 问题是如何知道 F(X) 公式?         事实上,使用公式或一系列

    2024年02月13日
    浏览(41)
  • 机器学习深度确定性策略梯度(DDPG)笔记

    深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)是一种用于解决连续动作空间的强化学习算法。它结合了确定性策略梯度方法和深度神经网络。 DDPG算法的基本思想是通过两个神经网络来近似值函数和策略函数。其中,值函数网络(critic)用于估计当前状态-动作对的

    2024年02月16日
    浏览(39)
  • 机器学习和深度学习-- 李宏毅(笔记与个人理解)Day10

    这节课主要介绍机器学习和深度学习任务中常见的问题分类以及相应的解决之道 这张图总体的概述了一个任务中的大小坎坷,不认得英文? 去Google吧~ training Loss 不够的case Loss on Testing data over fitting 为什么over fitting 留到下下周哦~~ 期待 solve CNN卷积神经网络 Bias-Conplexiy Trade

    2024年04月17日
    浏览(43)
  • 机器学习和深度学习--李宏毅(笔记与个人理解)Day9

    中间打了一天的gta5,图书馆闭馆正好+npy 不舒服那天+天气不好,哈哈哈哈哈总之各种理由吧,导致昨天没弄起来,今天补更! 这里重点注意一下, 这个 output值是概率哈,也就是说式子整体表示的含义是 x 属于c1的概率是多大 这个老师真的是讲到我的心坎子里区了,这个lo

    2024年04月17日
    浏览(47)
  • 【机器学习合集】模型设计之网络宽度和深度设计 ->(个人学习记录笔记)

    在深度学习中,网络的宽度和深度是两个重要的超参数,它们对模型的性能和训练过程有重要影响。以下是有关网络宽度和深度的设计考虑: 网络宽度: 网络宽度指的是 每个层中的神经元数量 。增加宽度可以增加模型的 表示能力 ,有助于学习更复杂的模式。但要注意,增

    2024年02月08日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包