回归预测 | MATLAB实现WOA-DBN鲸鱼算法优化深度置信网络的多输入回归预测
效果一览
基本介绍
基于鲸鱼算法优化深度置信网络(WOA-DBN)的数据回归预测,优化参数为隐藏层节点数目,反向迭代次数,反向学习率,利用交叉验证抑制过拟合问题,matlab代码。
评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
MATLAB实现基于WOA-DBN鲸鱼算法优化深度置信网络(WOA-DBN)的多输入回归预测(Matlab完整程序和数据)
输入多个特征,输出1个,即多输入单输出;
运行环境Matlab2018及以上,运行主程序main即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集;
命令窗口输出RMSEP、MAE、R2、MAPE。-----------------------误差计算--------------------------
评价结果如下所示:
平均绝对误差MAE为:0.16722
均方误差MSE为: 0.061486
均方根误差RMSE为: 0.24796
决定系数R^2为: 0.98945
剩余预测残差RPD为: 10.0234
平均绝对百分比误差MAPE为: 0.04507
模型描述
WOA-DBN鲸鱼算法优化深度置信网络(WOA-DBN)是一种基于深度置信网络(DBN)的多输入回归预测算法,通过使用鲸鱼优化算法(WOA)来优化DBN模型的参数。该算法的目标是将多个输入变量映射到单个输出变量,并且可以应用于各种领域的数据预测问题。
具体来说,该算法首先使用DBN模型对输入数据进行建模,然后使用WOA算法来搜索最佳的DBN模型参数。在WOA算法中,候选解被表示为鲸鱼的位置,而每个鲸鱼的适应度值则对应着DBN模型的预测误差。通过不断迭代更新鲸鱼位置,WOA算法可以找到最佳的DBN模型参数,从而提高预测性能。
值得注意的是,该算法需要大量的数据进行训练,并且需要仔细选择DBN模型的参数和WOA算法的参数,以获得最佳的预测性能。文章来源:https://www.toymoban.com/news/detail-530103.html
程序设计
- 完整程序和数据下载方式1(资源处直接下载):MATLAB实现基于WOA-DBN鲸鱼算法优化深度置信网络(WOA-DBN)的多输入回归预测
- 完整程序和数据下载方式2(订阅《DBN深度置信网络》专栏,同时可阅读《DBN深度置信网络》专栏收录的所有内容,数据订阅后私信我获取):MATLAB实现基于WOA-DBN鲸鱼算法优化深度置信网络(WOA-DBN)的多输入回归预测
- 完整程序和数据下载方式3(订阅《智能学习》专栏,同时获取《智能学习》专栏收录程序4份,订阅后三天内私信我获取):MATLAB实现基于WOA-DBN鲸鱼算法优化深度置信网络(WOA-DBN)的多输入回归预测
%_________________________________________________________________________%
% 麻雀优化算法 %
%_________________________________________________________________________%
%_________________________________________________________________________%
% Whale Optimization Algorithm (WOA) source codes demo 1.0 %
% %
% Developed in MATLAB R2011b(7.13) %
% %
% Author and programmer: Seyedali Mirjalili %
% %
% e-Mail: ali.mirjalili@gmail.com %
% seyedali.mirjalili@griffithuni.edu.au %
% %
% Homepage: http://www.alimirjalili.com %
% %
% Main paper: S. Mirjalili, A. Lewis %
% The Whale Optimization Algorithm, %
% Advances in Engineering Software , in press, %
% DOI: http://dx.doi.org/10.1016/j.advengsoft.2016.01.008 %
% %
%_________________________________________________________________________%
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)
% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems
%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);
curve=zeros(1,Max_iter);
t=0;% Loop counter
% Main loop
while t<Max_iter
for i=1:size(Positions,1)
% Return back the search agents that go beyond the boundaries of the search space
Flag4ub=Positions(i,:)>ub;
Flag4lb=Positions(i,:)<lb;
Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
% Calculate objective function for each search agent
fitness=fobj(Positions(i,:));
% Update the leader
if fitness<Best_Cost % Change this to > for maximization problem
Best_Cost=fitness; % Update alpha
Best_pos=Positions(i,:);
end
end
a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)
% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)
a2=-1+t*((-1)/Max_iter);
% Update the Position of search agents
for i=1:size(Positions,1)
r1=rand(); % r1 is a random number in [0,1]
r2=rand(); % r2 is a random number in [0,1]
A=2*a*r1-a; % Eq. (2.3) in the paper
C=2*r2; % Eq. (2.4) in the paper
b=1; % parameters in Eq. (2.5)
l=(a2-1)*rand+1; % parameters in Eq. (2.5)
p = rand(); % p in Eq. (2.6)
for j=1:size(Positions,2)
if p<0.5
if abs(A)>=1
rand_leader_index = floor(pop*rand()+1);
X_rand = Positions(rand_leader_index, :);
D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)
Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8)
elseif abs(A)<1
D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)
Positions(i,j)=Best_pos(j)-A*D_Leader; % Eq. (2.2)
end
elseif p>=0.5
distance2Leader=abs(Best_pos(j)-Positions(i,j));
% Eq. (2.5)
Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);
end
end
end
t=t+1;
curve(t)=Best_Cost;
[t Best_Cost]
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718文章来源地址https://www.toymoban.com/news/detail-530103.html
到了这里,关于回归预测 | MATLAB实现WOA-DBN鲸鱼算法优化深度置信网络的多输入回归预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!