PyTorch示例——ResNet34模型和Fruits图像数据

这篇具有很好参考价值的文章主要介绍了PyTorch示例——ResNet34模型和Fruits图像数据。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

  • ResNet34模型,做图像分类
  • 数据使用水果图片数据集,下载见Kaggle Fruits Dataset (Images)
  • Kaggle的Notebook示例见 PyTorch——ResNet34模型和Fruits数据
  • 下面见代码

导包

from PIL import Image
import os
import random
import matplotlib.pyplot as plt
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
from torch.nn import functional as F
from torchvision import transforms as T
from torchvision.datasets import ImageFolder
import tqdm

数据探索查看

  • 查看图像
path = "/kaggle/input/fruits-dataset-images/images"
fruit_path = "apple fruit"
apple_files = os.listdir(path + "/" + fruit_path)

Image.open(path + "/"+fruit_path+"/" + apple_files[2])

PyTorch示例——ResNet34模型和Fruits图像数据,# PyTorch,MachineLearning,pytorch,人工智能,深度学习,ResNet34,Residual

  • 展示多张图片
def show_images(n_rows, n_cols, x_data):
    assert n_rows * n_cols <= len(x_data)
    
    plt.figure(figsize=(n_cols * 1.5, n_rows * 1.5))
    for row in range(n_rows):
        for col in range(n_cols):
            index = row * n_cols + col
            plt.subplot(n_rows, n_cols, index + 1)
            plt.imshow(x_data[index][0], cmap="binary", interpolation="nearest")  # 图像
            plt.axis("off")
            plt.title(x_data[index][1])  # 标签
    plt.show()
   
def show_fruit_imgs(fruit, cols, rows):
    files = os.listdir(path + "/" + fruit)
    images = []
    for _ in range(cols * rows):
        file = files[random.randint(0, len(files) -1)]
        image = Image.open(path + "/" + fruit + "/" + file)
        label = file.split(".")[0]
        images.append((image, label))
    show_images(cols, rows, images)
  • 苹果
show_fruit_imgs("apple fruit", 3, 3)

PyTorch示例——ResNet34模型和Fruits图像数据,# PyTorch,MachineLearning,pytorch,人工智能,深度学习,ResNet34,Residual

  • 樱桃
show_fruit_imgs("cherry fruit", 3, 3)

PyTorch示例——ResNet34模型和Fruits图像数据,# PyTorch,MachineLearning,pytorch,人工智能,深度学习,ResNet34,Residual

数据集构建

  • 直接使用ImageFolder加载数据,按目录解析水果类别
transforms = T.Compose([
    T.Resize(224),
    T.CenterCrop(224),
    T.ToTensor(),
    T.Normalize(mean=[5., 5., 5.], std=[.5, .5, .5])
])

train_dataset = ImageFolder(path, transform=transforms)
classification = os.listdir(path)

train_dataset[2]
  • 输出如下
(tensor([[[-8., -8., -8.,  ..., -8., -8., -8.],
          [-8., -8., -8.,  ..., -8., -8., -8.],
          [-8., -8., -8.,  ..., -8., -8., -8.],
          ...,
          [-8., -8., -8.,  ..., -8., -8., -8.],
          [-8., -8., -8.,  ..., -8., -8., -8.],
          [-8., -8., -8.,  ..., -8., -8., -8.]],
 
         [[-8., -8., -8.,  ..., -8., -8., -8.],
          [-8., -8., -8.,  ..., -8., -8., -8.],
          [-8., -8., -8.,  ..., -8., -8., -8.],
          ...,
          [-8., -8., -8.,  ..., -8., -8., -8.],
          [-8., -8., -8.,  ..., -8., -8., -8.],
          [-8., -8., -8.,  ..., -8., -8., -8.]],
 
         [[-8., -8., -8.,  ..., -8., -8., -8.],
          [-8., -8., -8.,  ..., -8., -8., -8.],
          [-8., -8., -8.,  ..., -8., -8., -8.],
          ...,
          [-8., -8., -8.,  ..., -8., -8., -8.],
          [-8., -8., -8.,  ..., -8., -8., -8.],
          [-8., -8., -8.,  ..., -8., -8., -8.]]]),
 0)

构建模型 ResNet34

  • ResidualBlock
class ResidualBlock(nn.Module):
    
    def __init__(self, in_channels, out_channels, stride=1):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=(3, 3), stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.is_shortcut = stride > 1
        self.shortcut = None if not self.is_shortcut else self._shortcut(in_channels, out_channels, stride)
    
    def forward(self, X):
        out = self.conv1(X)
        out = self.bn1(out)
        out = F.relu(out, inplace=True)
        out = self.conv2(out)
        out = self.bn2(out)
        # 当X的维度和out不一致时,需要用shortcut处理X
        out += X if not self.shortcut else self.shortcut(X)
        out = F.relu(out)
        return out
    
    def _shortcut(self, in_channels, out_channels, stride):
        return nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 1, stride, bias=False),
            nn.BatchNorm2d(out_channels)
        )
  • ResNet34
class ResNet34(nn.Module):
    
    def __init__(self, num_classes=2):
        super().__init__()
        self.pre = nn.Sequential(
            nn.Conv2d(3, 64, 7, 2, 3, bias=False),  # 64 * 112 * 112
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(3, 2, 1)  # 64 * 56 * 56
        )
        # layer1 不需要shortcut,因为图像没变化(kernel_size=3,stride=1, padding=1)
        self.layer1 = self._make_layer(64, 64, 3, 1)
        self.layer2 = self._make_layer(64, 128, 4, 2)
        self.layer3 = self._make_layer(128, 256, 6, 2)
        self.layer4 = self._make_layer(256, 512, 3, 2)
        self.fc = nn.Linear(512, num_classes)
        
    def _make_layer(self, in_channels, out_channels, block_num, stride):
        layers = [ResidualBlock(in_channels, out_channels, stride)]
        for i in range(1, block_num):
            layers.append(ResidualBlock(out_channels, out_channels))
        return nn.Sequential(*layers)
    
    def forward(self, X):
        # X: 3 * 224 * 224
        out = self.pre(X)                # 64 * 56 * 56
        out = self.layer1(out)           # 64 * 56 * 56
        out = self.layer2(out)           # 128 * 28 * 28
        out = self.layer3(out)           # 256 * 14 * 14
        out = self.layer4(out)           # 512 * 7 * 7
        out = F.avg_pool2d(out, 7)       # 512 * 1 * 1
        out = out.view(out.size(0), -1)  # 512 
        out = self.fc(out)               # len(classification)
        return out

模型训练

  • 准备代码
def pad(num, target) -> str:
    """
    将num长度与target对齐
    """
    return str(num).zfill(len(str(target)))

# 参数配置
epoch_num = 50
batch_size = 32
learning_rate = 0.0005

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 数据
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)

# 构建模型
model = ResNet34(len(classification)).to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

print(model)
ResNet34(
  (pre): Sequential(
    (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
    (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU(inplace=True)
    (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  )
  (layer1): Sequential(
    (0): ResidualBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): ResidualBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (2): ResidualBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer2): Sequential(
    (0): ResidualBlock(
      (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (right): Sequential(
        (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): ResidualBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (2): ResidualBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (3): ResidualBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer3): Sequential(
    (0): ResidualBlock(
      (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (right): Sequential(
        (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): ResidualBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (2): ResidualBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (3): ResidualBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (4): ResidualBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (5): ResidualBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer4): Sequential(
    (0): ResidualBlock(
      (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (right): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): ResidualBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (2): ResidualBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (fc): Linear(in_features=512, out_features=9, bias=True)
)
  • 开始训练
# 开始训练
train_loss_list = []
total_step = len(train_loader)
for epoch in range(1, epoch_num + 1):
    model.train
    train_total_loss, train_total, train_correct  = 0, 0, 0
    train_progress = tqdm.tqdm(train_loader, desc="Train...")
    for i, (X, y) in enumerate(train_progress, 1):
        X, y = X.to(device), y.to(device)
        
        out = model(X)
        loss = criterion(out, y)
        
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
        
        _, pred = torch.max(out, 1)
        train_total += y.size(0)
        train_correct += (pred == y).sum().item()
        train_total_loss += loss.item()

        train_progress.set_description(f"Train... [epoch {pad(epoch, epoch_num)}/{epoch_num}, loss {(train_total_loss / i):.4f}, accuracy {train_correct / train_total:.4f}]")
    train_loss_list.append(train_total_loss / total_step) 
Train... [epoch 01/50, loss 2.3034, accuracy 0.2006]: 100%|██████████| 12/12 [00:15<00:00,  1.32s/it]
Train... [epoch 02/50, loss 1.9193, accuracy 0.3064]: 100%|██████████| 12/12 [00:16<00:00,  1.36s/it]
Train... [epoch 03/50, loss 1.6338, accuracy 0.3482]: 100%|██████████| 12/12 [00:15<00:00,  1.30s/it]
Train... [epoch 04/50, loss 1.6031, accuracy 0.3649]: 100%|██████████| 12/12 [00:16<00:00,  1.38s/it]
Train... [epoch 05/50, loss 1.5298, accuracy 0.4401]: 100%|██████████| 12/12 [00:15<00:00,  1.31s/it]
Train... [epoch 06/50, loss 1.4189, accuracy 0.4429]: 100%|██████████| 12/12 [00:16<00:00,  1.34s/it]
Train... [epoch 07/50, loss 1.5439, accuracy 0.4708]: 100%|██████████| 12/12 [00:15<00:00,  1.31s/it]
Train... [epoch 08/50, loss 1.4378, accuracy 0.4596]: 100%|██████████| 12/12 [00:16<00:00,  1.36s/it]
Train... [epoch 09/50, loss 1.4005, accuracy 0.5348]: 100%|██████████| 12/12 [00:15<00:00,  1.32s/it]
Train... [epoch 10/50, loss 1.2937, accuracy 0.5599]: 100%|██████████| 12/12 [00:16<00:00,  1.34s/it]
......
Train... [epoch 45/50, loss 0.7966, accuracy 0.7354]: 100%|██████████| 12/12 [00:15<00:00,  1.27s/it]
Train... [epoch 46/50, loss 0.8075, accuracy 0.7660]: 100%|██████████| 12/12 [00:15<00:00,  1.33s/it]
Train... [epoch 47/50, loss 0.8587, accuracy 0.7131]: 100%|██████████| 12/12 [00:15<00:00,  1.27s/it]
Train... [epoch 48/50, loss 0.7171, accuracy 0.7604]: 100%|██████████| 12/12 [00:16<00:00,  1.35s/it]
Train... [epoch 49/50, loss 0.9715, accuracy 0.7047]: 100%|██████████| 12/12 [00:15<00:00,  1.27s/it]
Train... [epoch 50/50, loss 0.7050, accuracy 0.7855]: 100%|██████████| 12/12 [00:15<00:00,  1.33s/it]

绘制训练曲线

plt.plot(range(len(train_loss_list)), train_loss_list)
plt.xlabel("epoch")
plt.ylabel("loss_val")
plt.show()

PyTorch示例——ResNet34模型和Fruits图像数据,# PyTorch,MachineLearning,pytorch,人工智能,深度学习,ResNet34,Residual文章来源地址https://www.toymoban.com/news/detail-530182.html

到了这里,关于PyTorch示例——ResNet34模型和Fruits图像数据的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 度学习pytorch实战六:ResNet50网络图像分类篇自建花数据集图像分类(5类)超详细代码

    1.数据集简介、训练集与测试集划分 2.模型相关知识 3.model.py——定义ResNet50网络模型 4.train.py——加载数据集并训练,训练集计算损失值loss,测试集计算accuracy,保存训练好的网络参数 5.predict.py——利用训练好的网络参数后,用自己找的图像进行分类测试 1.自建数据文件夹

    2024年02月09日
    浏览(28)
  • 人工智能(Pytorch)搭建模型6-使用Pytorch搭建卷积神经网络ResNet模型

    大家好,我是微学AI,今天给大家介绍一下人工智能(Pytorch)搭建模型6-使用Pytorch搭建卷积神经网络ResNet模型,在本文中,我们将学习如何使用PyTorch搭建卷积神经网络ResNet模型,并在生成的假数据上进行训练和测试。本文将涵盖这些内容:ResNet模型简介、ResNet模型结构、生成假

    2024年02月06日
    浏览(41)
  • 深度学习图像分类实战——pytorch搭建卷积神经网络(AlexNet, LeNet, ResNet50)进行场景图像分类(详细)

    目录 1  一、实验过程 1.1  实验目的 1.2  实验简介 1.3  数据集的介绍 1.4  一、LeNet5网络模型 1.5  二、AlexNet网络模型 1.6  三、ResNet50(残差网络)网络模型  二、实验代码 导入实验所需要的库  参数配置 数据预处理 重新DataSet 加载数据转为DataLoader函数 可视化一批训练

    2024年02月05日
    浏览(48)
  • Pytorch迁移学习使用Resnet50进行模型训练预测猫狗二分类

    目录   1.ResNet残差网络 1.1 ResNet定义  1.2 ResNet 几种网络配置  1.3 ResNet50网络结构 1.3.1 前几层卷积和池化 1.3.2 残差块:构建深度残差网络 1.3.3 ResNet主体:堆叠多个残差块 1.4 迁移学习猫狗二分类实战 1.4.1 迁移学习 1.4.2 模型训练 1.4.3 模型预测   深度学习在图像分类、目标检

    2024年02月16日
    浏览(28)
  • 【超详细小白必懂】Pytorch 直接加载ResNet50模型和参数实现迁移学习

    Torchvision.models包里面包含了常见的各种基础模型架构,主要包括以下几种:(我们以ResNet50模型作为此次演示的例子) AlexNet VGG ResNet SqueezeNet DenseNet Inception v3 GoogLeNet ShuffleNet v2 MobileNet v2 ResNeXt Wide ResNet MNASNet 首先加载ResNet50模型,如果如果需要加载模型本身的参数,需要使用

    2024年02月16日
    浏览(31)
  • 深度学习(16)--基于经典网络架构resnet训练图像分类模型

    目录 一.项目介绍 二.项目流程详解 2.1.引入所需的工具包 2.2.数据读取和预处理 2.3.加载resnet152模型 2.4.初始化模型 2.5.设置需要更新的参数 2.6.训练模块设置 2.7.再次训练所有层 2.8.测试网络效果 三.完整代码 使用PyTorch工具包调用经典网络架构resnet训练图像分类模型,用于分辨

    2024年02月20日
    浏览(33)
  • 基于ResNet34的花朵分类

    新建一个项目文件夹ResNet,并在里面建立data_set文件夹用来保存数据集,在data_set文件夹下创建新文件夹\\\"flower_data\\\",点击链接下载花分类数据集https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz,会下载一个压缩包,将它解压到flower_data文件夹下,执行\\\"split_d

    2024年02月07日
    浏览(32)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十九):卷积神经网络模型(GoogLeNet、ResNet、DenseNet)

    发布时间:2014年 GoogLeNet的贡献是如何选择合适大小的卷积核,并将不同大小的卷积核组合使用。 之前介绍的网络结构都是串行的,GoogLeNet使用并行的网络块,称为“Inception块” “Inception块”前后进化了四次,论文链接: [1]https://arxiv.org/pdf/1409.4842.pdf [2]https://arxiv.org/pdf/150

    2024年02月12日
    浏览(38)
  • 混淆矩阵Confusion Matrix(resnet34 基于 CIFAR10)

    目录 1. Confusion Matrix 2. 其他的性能指标 3. example 4. 代码实现混淆矩阵 5.  测试,计算混淆矩阵 6. show 7. 代码 混淆矩阵可以将真实标签和预测标签的结果以矩阵的形式表示出来,相比于之前计算的正确率acc更加的直观。 如下,是花分类的混淆矩阵: 之前计算的acc = 预测正确的

    2024年02月01日
    浏览(30)
  • 【神经网络】(10) Resnet18、34 残差网络复现,附python完整代码

    各位同学好,今天和大家分享一下 TensorFlow 深度学习 中如何搭载 Resnet18 和 Resnet34 残差神经网络,残差网络 利用 shotcut 的方法成功解决了网络退化的问题 ,在训练集和校验集上,都证明了的更深的网络错误率越小。 论文中给出的具体的网络结构如下: Resnet50 网络结构 我已

    2023年04月08日
    浏览(30)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包