Python数据分析学习收获与心得

这篇具有很好参考价值的文章主要介绍了Python数据分析学习收获与心得。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Python是一种功能强大的编程语言,它被广泛应用于数据科学和机器学习领域。Python的数据分析库非常丰富,包括NumPy、Pandas、Matplotlib、Scikit-learn等。在学习Python数据分析的过程中,我收获了很多,以下是我的心得体会。

第一,Python数据分析的基础知识非常重要。在学习Python数据分析之前,我们需要掌握Python的基础语法、数据类型、函数、控制结构等知识。只有掌握了这些基础知识,才能更好地理解和应用Python的数据分析库。

第二,NumPy是Python数据分析的基础。NumPy是Python的一个科学计算库,它提供了高效的多维数组操作和数学函数。在Python数据分析中,我们经常需要处理大量的数据,使用NumPy可以提高代码的运行效率。同时,NumPy还提供了一些统计函数和线性代数函数,方便我们进行数据分析和建模。

第三,Pandas是Python数据分析的核心。Pandas是Python的一个数据分析库,它提供了高效的数据结构和数据操作方法。Pandas的数据结构包括Series和DataFrame,分别用于表示一维和二维的带标签数据。Pandas提供了丰富的数据操作方法,包括数据的选择、过滤、排序、聚合等。Pandas的数据操作方法非常灵活,可以满足不同的数据分析需求。

第四,Matplotlib是Python数据分析的可视化工具。Matplotlib是Python的一个数据可视化库,它提供了丰富的绘图功能,可以绘制线图、散点图、柱状图、饼图等。Matplotlib的绘图风格可以自定义,可以满足不同的数据可视化需求。Matplotlib还可以与Pandas和NumPy结合使用,方便我们对数据进行可视化分析。

第五,Scikit-learn是Python数据分析的机器学习库。Scikit-learn是Python的一个机器学习库,它提供了丰富的机器学习算法和工具,包括分类、回归、聚类、降维等。Scikit-learn还提供了数据预处理、特征选择、模型评估等工具,方便我们进行机器学习建模和分析。

在学习Python数据分析的过程中,我还学到了一些技巧和注意事项。首先,Python数据分析需要良好的数据处理能力。在进行数据分析之前,我们需要对数据进行清洗、转换和处理,确保数据的质量和准确性。其次,Python数据分析需要良好的编程习惯。我们需要编写可读性强、可维护性强的代码,遵循良好的编程规范和风格。最后,Python数据分析需要不断学习和实践。数据科学和机器学习领域的技术和方法不断更新,我们需要不断学习和实践,保持自己的竞争力。

总之,Python数据分析是一项非常有挑战性和有意义的工作。通过学习Python数据分析,我们可以更好地理解和应用数据科学和机器学习的技术和方法,为实现数据驱动的决策和创新提供支持和帮助。

接下来我将详细介绍Python数据分析的各个方面,包括数据清洗、数据处理、数据可视化和机器学习建模等。希望这些内容能够对初学者有所帮助。

一、数据清洗

在进行Python数据分析之前,我们需要对数据进行清洗。数据清洗是指对数据进行预处理,包括缺失值处理、异常值处理、重复值处理等。数据清洗的目的是确保数据的质量和准确性,避免对数据分析结果产生影响。

1. 缺失值处理

在数据中,有些数据可能缺失或者为空。缺失值的处理是数据清洗中的一个重要环节。缺失值的处理方法包括删除、填充和插值等。

删除缺失值:当数据中的缺失值比例较少时,可以直接删除缺失值所在的行或列。删除缺失值的方法可以使用Pandas库中的dropna()函数。

填充缺失值:当数据中的缺失值比例较多时,可以使文章来源地址https://www.toymoban.com/news/detail-530328.html

到了这里,关于Python数据分析学习收获与心得的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python数据分析—基于机器学习的UCI心脏病数据分析(源码+数据+分析设计)

    下载链接:https://pan.baidu.com/s/1ys2F6ZH4EgnFdVP2mkTcsA?pwd=LCFZ 提取码:LCFZ 心脏病是一类比较常见的循环系统疾病。循环系统由心脏、血管和调节血液循环的神经体液组织构成,循环系统疾病也称为心血管病,包括上述所有组织器官的疾病,在内科疾病中属于常见病,其中以心脏病

    2024年02月07日
    浏览(53)
  • 数据分析-python学习 (1)numpy相关

    内容为:https://juejin.cn/book/7240731597035864121的学习笔记 numpy数组创建 创建全0数组,正态分布、随机数组等就不说了,提供了相应的方法 通过已有数据创建有两种 arr1=np.array([1,2,3,4,5]) 或者data=np.loadtxt(‘C:/Users/000001_all.csv’,dtype=‘float’,delimiter=‘,’,skiprows=1) (data=np.genfromtxt(‘

    2024年02月13日
    浏览(40)
  • python机器学习数据建模与分析——数据预测与预测建模

    数据预测,简而言之就是基于已有数据集,归纳出输入变量和输出变量之间的数量关系。基于这种数量关系: 一方面,可发现对输出变量产生重要影响的输入变量; 另一方面,在数量关系具有普适性和未来不变的假设下,可用于对新数据输出变量取值的预测。 对数值型输出变

    2024年02月04日
    浏览(46)
  • Matplotlib绘图知识小结--Python数据分析学习

    一、Pyplot子库绘制2D图表 1、Matplotlib Pyplot Pyplot 是 Matplotlib 的子库,提供了和 MATLAB 类似的绘图 API。 Pyplot 是常用的绘图模块,能很方便让用户绘制 2D 图表。 Pyplot 包含一系列绘图函数的相关函数,每个函数会对当前的图像进行一些修改,例如:给图像加上标记,生新的图像,

    2024年02月12日
    浏览(46)
  • python数据分析学习day08:柱状图

    柱状图是一种用矩形柱来表示数据分类的图表。 柱状图可以垂直绘制,也可以水平绘制。 它的高度与其所表示的数值成正比关系。 柱状图显示了不同类别之间的比较关系,图表的水平轴 X 指定被比较的类别,垂直轴 Y 则表示具体的类别值 x 表示x坐标,数据类型为float类型,

    2024年02月09日
    浏览(39)
  • 大数据舆情评论数据分析:基于Python微博舆情数据爬虫可视化分析系统(NLP情感分析+爬虫+机器学习)

    基于Python的微博舆情数据爬虫可视化分析系统,结合了NLP情感分析、爬虫技术和机器学习算法。该系统的主要目标是从微博平台上抓取实时数据,对这些数据进行情感分析,并通过可视化方式呈现分析结果,以帮助用户更好地了解舆情动向和情感倾向。系统首先利用爬虫技术

    2024年04月15日
    浏览(42)
  • 【数据分析入门】人工智能、数据分析和深度学习是什么关系?如何快速入门 Python Pandas?

    本文详细介绍了人工智能、数据分析和深度学习之间的关系,并就数据分析所需的Pandas库做了胎教般的入门引导。祝读得开心!   本文是原 《数据分析大全》 、现改名为 《数据分析》 专栏的第二篇,我在写这篇文章的时候突然意识到—— 单靠我是不可能把数据分析的方

    2024年02月14日
    浏览(70)
  • python数据分析学习笔记之matplotlib、numpy、pandas

    为了学习机器学习,在此先学习以下数据分析的matplotlib,numpy,pandas,主要是为自己的学习做个记录,如有不会的可以随时查阅。希望大家可以一起学习共同进步,我们最终都可以说:功不唐捐,玉汝于成。就算遇到困难也不要气馁,大声说:我不怕,我敏而好学!! 把大量

    2024年02月08日
    浏览(56)
  • 【零基础入门学习Python---Python中数据分析与可视化之快速入门实践】

    🚀 零基础入门学习Python🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,CSDN-Java领域优质创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题

    2024年02月13日
    浏览(55)
  • 基于Python电商用户行为的数据分析、机器学习、可视化研究

    有需要本项目的源码以及全套文档和相关资源,可以私信博主!!! 在数字化和互联网技术飞速发展的推动下,消费者的购买能力和消费观念呈现不断升级和变迁的趋势。用户消费数据的爆炸式增长,为我们提供了寻找潜在价值信息的机会。 本研究使用了阿里巴巴提供的淘

    2024年02月04日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包