概率论公式

这篇具有很好参考价值的文章主要介绍了概率论公式。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

方差D(x+y)=D(x)+D(y)+2Cov(x,y)=D(x)+D(y)

协方差Cov(x,y)=E(xy)-E(x)E(y),相互独立的随机变量x,y满足E(xy)=E(x)E(y)

所以随机变量xy相互对立 时,D(x+y)=D(x)+D(y)

转自:多个随机变量运算后的均值与方差计算_爱吃酸菜鱼的汉堡的博客-CSDN博客_多个随机变量的和的方差

d(x+y)=d(x)+d(y)+2cov(x,y),数学/物理/化学,概率论

d(x+y)=d(x)+d(y)+2cov(x,y),数学/物理/化学,概率论

 d(x+y)=d(x)+d(y)+2cov(x,y),数学/物理/化学,概率论文章来源地址https://www.toymoban.com/news/detail-531262.html

到了这里,关于概率论公式的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 概率论--随机事件与概率--贝叶斯公式--随机变量

    目录 随机事件与概率 概念 为什么要学习概率论 随机事件与随机事件概率 随机事件 随机事件概率 贝叶斯公式  概念 条件概率 概率乘法公式 贝叶斯公式  举个栗子 随机变量   随机变量的定义 随机变量的分类 离散型随机变量 连续型随机变量 概念 随机事件是指在一次试验

    2024年02月11日
    浏览(49)
  • 【概率论】贝叶斯公式的作业

    两台车床加工同样的零件,第一台出现不合格品的概率是 0.03,第二台出现不合格品的概率是 0.06,加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.如果取出的零件是不合格品,求它是由第二台车床加工的概率_____; (结果小数点后保留1位) 【正

    2024年02月11日
    浏览(40)
  • 概率论与数理统计常用公式大全

    A − B = A − A B = A B ‾ B = A ‾    ⟺    A B = ∅    且 A ∪ B = Ω ( 1 ) 吸 收 律    若 A ⊂ B , 则 A ∪ B = B , A B = A ( 2 ) 交 换 律    A ∪ B = B ∪ A , A B = B A ( 3 ) 结 合 律    ( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) , ( A B ) C = A ( B C ) ( 4 ) 分 配 律    A ( B ∪ C ) = A B ∪ A C , A ∪ B C = ( A ∪

    2024年02月11日
    浏览(49)
  • 概率论_概率公式中的逗号( , ) 竖线( | ) 分号( ; )及其优先级

    目录 1.概率公式中的分号(;)、逗号(,)、竖线(|) 2.各种概率相关的基本概念 2.1 联合概率 2.2 条件概率(定义) 2.3 全概率(乘法公式的加强版) 2.4 贝叶斯公式 贝叶斯定理的公式推导  ;  分号 代表前后是两类东西,以概率P(x;θ)为例,分号前面是x样本,分号后边是模型参数。 分号

    2024年02月05日
    浏览(45)
  • 从二重积分换元法到概率论卷积公式

    二重积分换元公式 (第七版同济书下册P152) 设 f ( x , y ) f(x, y) f ( x , y ) 在 x O y x O y x O y 平面上的闭区域 D D D 上连续,若变换 T : x = x ( u , v ) ,   y = y ( u , v ) T: x=x(u, v), y=y(u, v) T : x = x ( u , v ) ,   y = y ( u , v ) 将 u O v u O v u O v 平面上的闭区域 D ′ D^{prime} D ′ 变为 x O y x O y

    2024年02月04日
    浏览(35)
  • 概率论的学习和整理17:EXCEL的各种期望,方差的公式

    目录 1 总结 1.1 本文目标总结方法 1.2 总结一些中间关键函数 2 均值和期望 2.1 求均值的公式 2.2 求随机变量期望的公式 2.3 求随机变量期望的朴素公式 3 方差 3.1 确定数的方差 3.2 统计数的方差公式 3.3 随机变量的方差公式 3.4 EXCEL提供的直接计算方差的公式 4  期望 和方差的公

    2024年02月16日
    浏览(41)
  • 高等数学:概率论(二)

    设随机实验E的样本空间为 Ω Omega Ω ,X为定义于样本空间 Ω Omega Ω 上的函数,对任意的 w ∈ Ω win Omega w ∈ Ω ,总存在唯一确定的的 X ( w ) X(w) X ( w ) 与之对应,称 X ( w ) X(w) X ( w ) 为随机变量。 随机变量的分布函数 设 X 为随机变量, 对任意的实数 x, 称函数 F ( x ) = P { X ⩽

    2024年02月09日
    浏览(52)
  • 【人工智能数学:01 高等概率论】(2) 离散型概率空间

            这篇文章是对概率空间最基本概念的描述。解决的基本问题是试图“说服”大家,概率空间是个啥。不解决这种基本问题,试图提高学术水平是不可能的。         本文将涉及概率空间的定义、对于离散概率事件的定义、连续概率事件的定义、代数的一些含义、

    2024年02月10日
    浏览(52)
  • 概率论-条件数学期望(复习笔记自用)

    实际上,求条件期望就是在新的概率空间上进行计算,即 ,因此也继承了期望的所有性质 如果 ,则E(X)=Eg(Y) 使用全概率公式,可以容易得到证明 理解,找到共性 正态分布的优良性质:正态分布的条件分布仍为正态分布 公式的证明充分体现出微分法的优势 理解:对于固定的

    2024年02月08日
    浏览(41)
  • 均值与概率论:数学关系与实际应用

    均值与概率论是数学和统计学中的基本概念,它们在各个领域的应用非常广泛。均值是用来描述一个数据集的中心趋势的一个量度,常用于对数据进行整理和分析。概率论则是一门数学学科,研究事件发生的可能性和相关概率。这两个概念在实际应用中是密切相关的,因为在

    2024年04月16日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包