逻辑代数的基本公式和常用公式

这篇具有很好参考价值的文章主要介绍了逻辑代数的基本公式和常用公式。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、基本公式

0-1律

A*0 = 0

A+1 = 1
自等律 A*1 = 1 A+1 = A
重叠率 A*A = A A+A = A
互补律 A* = 0 A+ = 1
交换律 A*B = B*A A+B = B+A
结合律 A*(B*C) = (A*B)*C A+(B+C) = (A+B)+C
分配律 A*(B+C) = AB+AC A+B*C = (A+B)(A+C)
吸收律 A(A+B) = A A+AB = A
反演律  = + 逻辑代数,数字逻辑与数字系统,线性代数 = *
双重否定律 逻辑代数,数字逻辑与数字系统,线性代数

 文章来源地址https://www.toymoban.com/news/detail-531737.html

 2、常用公式

公式一 AB+A = A
公式二 A+B = A+B
公式三

AB+C+BC = AB+C

推论:

AB+C+BCD = AB+C 

公式四 逻辑代数,数字逻辑与数字系统,线性代数
公式五

逻辑代数,数字逻辑与数字系统,线性代数

逻辑代数,数字逻辑与数字系统,线性代数 

 

 

 

公式六 逻辑代数,数字逻辑与数字系统,线性代数
公式七 逻辑代数,数字逻辑与数字系统,线性代数

 

 逻辑代数,数字逻辑与数字系统,线性代数

 

 

到了这里,关于逻辑代数的基本公式和常用公式的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Paddle】PCA线性代数基础 + 领域应用:人脸识别算法(1.1w字超详细:附公式、代码)

    🌈你好呀!我是 是Yu欸 🌌 2024每日百字篆刻时光,感谢你的陪伴与支持 ~ 🚀 欢迎一起踏上探险之旅,挖掘无限可能,共同成长! 主成分分析(PCA,Principal Component Analysis)是一项在高维数据中,寻找最重要特征的降维技术,大大减少数据的维度,而不显著损失信息量。 本文

    2024年04月28日
    浏览(51)
  • 线性代数 --- 线性代数基本定理上(四个基本子空间的维数,行秩=列秩)

    构造子空间的方法主要有两种: 1,一种是给出一组向量,由他们来张成子空间。         例如,矩阵的列空间和行空间就是通过这种方法来构造的,他们分别是由矩阵的各列和各行张成的。 2,一种是给出子空间所应受到的约束,满足这些约束条件的向量构成了该子空间

    2024年02月04日
    浏览(51)
  • matlab线性代数常用函数

    矩阵 A mathbf{A} A 行列式 det(A) 矩阵 A mathbf{A} A 的迹 trace(A) 矩阵 A mathbf{A} A 的秩 rank(A) 矩阵 A mathbf{A} A 的范数 norm(A) 矩阵 A mathbf{A} A 的特征多项式 poly(A) 这是数值法求解,解析法可以用 charppoly ,新版本方法可能有改变 矩阵 A mathbf{A} A 的多项式求值 poly(a,A) ,a是多项式系数的

    2024年02月07日
    浏览(58)
  • 线性代数|证明:线性空间的基本性质

    性质 1 零向量是唯一的。 证明 设 0 1 , 0 2 boldsymbol{0}_1, boldsymbol{0}_2 0 1 ​ , 0 2 ​ 是线性空间 V V V 中的两个零向量,即对任何 α ∈ V boldsymbol{alpha} in V α ∈ V ,有 α + 0 1 = α α + 0 2 = α begin{align*} boldsymbol{alpha} + boldsymbol{0}_1 = boldsymbol{alpha} tag{1} \\\\ boldsymbol{alpha} + bold

    2024年02月07日
    浏览(46)
  • 线性代数在数字信号处理中的重要性

    数字信号处理(Digital Signal Processing, DSP)是一种利用数字计算机对连续信号或离散信号进行处理的方法。它广泛应用于电子设计、通信、图像处理、音频处理、机器学习等领域。线性代数是数学的一个分支,主要研究的是矩阵和向量的运算。在数字信号处理中,线性代数发挥着

    2024年02月19日
    浏览(40)
  • 【线性代数】P1 行列式基本概念

    二阶行列式 二阶行列式:两行两列,四个元素,用 a i j a_{ij} a ij ​ 表示,其中 i i i 表示行标, j j j 表示列标。 左上角到右下角为主对角线,左下角到右上角为次对角线; 行列式的值为主对角线上的值相乘减去次对角线相乘的值。 三阶行列式 三阶行列式:三行三列,九个

    2023年04月24日
    浏览(40)
  • 机器学习——线性代数中矩阵和向量的基本介绍

    矩阵的基本概念(这里不多说,应该都知道) 而向量就是一个特殊的矩阵,即向量只有一列,是个n*1的矩阵 注 :一般矩阵用大写字母表示,向量用小写字母表示 先从简单开始,即一个矩阵和一个向量相乘的运算 矩阵相乘的结果的维度为 m*k 矩阵乘法满足结合律不满足交换律

    2024年02月21日
    浏览(45)
  • 【考研数学】线性代数第四章 —— 线性方程组(1,基本概念 | 基本定理 | 解的结构)

    继向量的学习后,一鼓作气,把线性方程组也解决了去。O.O 方程组 称为 n n n 元齐次线性方程组。 方程组 称为 n n n 元非齐次线性方程组。 方程组(I)又称为方程组(II)对应的齐次线性方程组或导出方程组。 方程组(I)和方程组(II)分别称为齐次线性方程组和非齐次线

    2024年02月11日
    浏览(44)
  • 深度学习 精选笔记(1)数据基本操作与线性代数

    学习参考: 动手学深度学习2.0 Deep-Learning-with-TensorFlow-book pytorchlightning ①如有冒犯、请联系侵删。 ②已写完的笔记文章会不定时一直修订修改(删、改、增),以达到集多方教程的精华于一文的目的。 ③非常推荐上面(学习参考)的前两个教程,在网上是开源免费的,写的很棒

    2024年03月10日
    浏览(60)
  • 线性代数-Python-01:向量的基本运算 - 手写Vector及numpy的基本用法

    https://github.com/Chufeng-Jiang/Python-Linear-Algebra-for-Beginner/tree/main 单位向量叫做 u hat Vector.py _globals.py main_vector.py main_numpy_vector.py

    2024年02月08日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包