n次方差公式:
a
n
−
b
n
=
(
a
−
b
)
(
a
n
−
1
+
a
n
−
2
b
+
a
n
−
3
b
2
+
⋅
⋅
⋅
+
a
b
n
−
2
+
b
n
−
1
)
,
n
∈
N
∗
a^{n}-b^{n}=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^{2}+···+ab^{n-2}+b^{n-1}),n \in N^{*}
an−bn=(a−b)(an−1+an−2b+an−3b2+⋅⋅⋅+abn−2+bn−1),n∈N∗
证法一:
a
n
−
b
n
=
a
n
−
a
n
−
1
b
+
a
n
−
1
b
−
a
n
−
2
b
2
+
a
n
−
2
b
2
−
⋅
⋅
⋅
+
a
b
n
−
1
−
b
n
=
a
n
−
1
(
a
−
b
)
+
a
n
−
2
b
(
a
−
b
)
+
⋅
⋅
⋅
+
b
n
−
1
(
a
−
b
)
=
(
a
−
b
)
(
a
n
−
1
+
a
n
−
2
b
+
a
n
−
3
b
2
+
⋅
⋅
⋅
+
a
b
n
−
2
+
b
n
−
1
)
\begin{aligned} a^{n}-b^{n} &= a^{n}-a^{n-1}b+a^{n-1}b-a^{n-2}b^{2}+a^{n-2}b^{2}-···+ab^{n-1}-b^{n} \\ &= a^{n-1}(a-b)+a^{n-2}b(a-b)+···+b^{n-1}(a-b) \\ &= (a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^{2}+···+ab^{n-2}+b^{n-1}) \end{aligned}
an−bn=an−an−1b+an−1b−an−2b2+an−2b2−⋅⋅⋅+abn−1−bn=an−1(a−b)+an−2b(a−b)+⋅⋅⋅+bn−1(a−b)=(a−b)(an−1+an−2b+an−3b2+⋅⋅⋅+abn−2+bn−1)
证法二:
设等比数列
a
n
{a_{n}}
an 的通项公式为
a
n
=
(
b
a
)
n
a_{n}=(\frac{b}{a})^{n}
an=(ab)n ,则其前
n
n
n 项和为:
b
a
+
(
b
a
)
2
+
(
b
a
)
3
+
⋅
⋅
⋅
+
(
b
a
)
n
−
1
+
(
b
a
)
n
=
b
a
[
1
−
(
b
a
)
n
]
1
−
b
a
=
b
[
1
−
(
b
a
)
n
]
a
−
b
=
b
(
a
n
−
b
n
)
a
n
(
a
−
b
)
\begin{aligned} & \frac{b}{a}+(\frac{b}{a})^{2}+(\frac{b}{a})^{3}+···+(\frac{b}{a})^{n-1}+(\frac{b}{a})^{n} \\ & = \frac{\frac{b}{a}[1-(\frac{b}{a})^{n}]}{1-\frac{b}{a}} = \frac{b[1-(\frac{b}{a})^{n}]}{a-b} = \frac{b(a^{n}-b^{n})}{a^{n}(a-b)} \end{aligned}
ab+(ab)2+(ab)3+⋅⋅⋅+(ab)n−1+(ab)n=1−abab[1−(ab)n]=a−bb[1−(ab)n]=an(a−b)b(an−bn)
故:
a
n
−
b
n
=
a
n
(
a
−
b
)
b
[
b
a
+
(
b
a
)
2
+
(
b
a
)
3
+
⋅
⋅
⋅
+
(
b
a
)
n
−
1
+
(
b
a
)
n
]
=
(
a
−
b
)
(
a
n
−
1
+
a
n
−
2
b
+
a
n
−
3
b
2
+
⋅
⋅
⋅
+
a
b
n
−
2
+
b
n
−
1
)
\begin{aligned} a^{n}-b^{n} &= \frac{a^{n}(a-b)}{b}[\frac{b}{a}+(\frac{b}{a})^{2}+(\frac{b}{a})^{3}+···+(\frac{b}{a})^{n-1}+(\frac{b}{a})^{n}] \\ &= (a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^{2}+···+ab^{n-2}+b^{n-1}) \end{aligned}
an−bn=ban(a−b)[ab+(ab)2+(ab)3+⋅⋅⋅+(ab)n−1+(ab)n]=(a−b)(an−1+an−2b+an−3b2+⋅⋅⋅+abn−2+bn−1)文章来源地址https://www.toymoban.com/news/detail-532046.html
文章来源:https://www.toymoban.com/news/detail-532046.html
到了这里,关于【数学】n次方差公式及证明方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!