ORB_SLAM3启动流程以stereo_inertial_realsense_D435i为例

这篇具有很好参考价值的文章主要介绍了ORB_SLAM3启动流程以stereo_inertial_realsense_D435i为例。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

概述

ORB-SLAM3 是第一个同时具备纯视觉(visual)数据处理、视觉+惯性(visual-inertial)数据处理、和构建多地图(multi-map)功能,支持单目、双目以及 RGB-D 相机,同时支持针孔相机、鱼眼相机模型的 SLAM 系统。

主要创新点:

1.在 IMU 初始化阶段引入 MAP。该初始化方法可以实时快速进行,鲁棒性上有很大的提升(在大的场景还是小的场景,不管室内还是室外环境均有较好表现),并且比当前的其他方法具有 2-5 倍的精确度的提升。
2.基于一种召回率大大提高的 place recognition(也就是做回环检测,与历史数据建立联系)方法实现了一个多子地图(multi-maps)系统。ORB-SLAM3 在视觉信息缺乏的情况下更具有 long term 鲁棒性,当跟丢的时候,这个时候就会重新建一个子地图,并且在回环的时候与之前的子地图进行合并。ORB-SLAM3 是第一个可以重用历史所有算法模块的所有信息的系统。

主要结论:

在所有 sensor 配置下,ORB-SLAM3 的鲁棒性与现在的发表的各大系统中相近,精度上有了显著的提高。尤其使用Stereo-Inertial SLAM,在 EuRoC 数据集的平均误差接近 3.6 cm,在一个偏向 AR/VR 场景的 TUM-VI 数据集的平均误差接近 9mm。
ORB_SLAM3系统框图
启动slam,ORB_SLAM3,人工智能,vr,自动驾驶,c++

ORB_SLAM3启动入口在Examples文件夹中,包含单目、双目、RGB-D,及其惯性组合。本文以双目+惯性作为例子,介绍stereo_inertial_realsense_D435i启动流程。

启动

./Examples/Stereo-Inertial/stereo_inertial_realsense_D435i ./Vocabulary/ORBvoc.txt ./Examples/Stereo-Inertial/Realsense_D435i.yaml

从启动参数可以看到,参数个数argc = 3,参数./Examples/Stereo-Inertial/stereo_inertial_realsense_D435i 为stereo_inertial_realsense_D435i main()函数入口,./Vocabulary/ORBvoc.txt 训练好的ORBvoc字典,参数./Examples/Stereo-Inertial/Realsense_D435i.yaml为D435i的配置文件,可以根据自己手上的D435i进行相机内外参、imu数据修改,具体可以参考系列博文Realsense d435i驱动安装、配置及校准

进入main函数后

一、利用librealsense2 rs接口对d435i就行设备读取,读取得到的句柄放sensors 中。

   ...
    string file_name;

    if (argc == 4) {
        file_name = string(argv[argc - 1]);
    }

    struct sigaction sigIntHandler;

    sigIntHandler.sa_handler = exit_loop_handler;
    sigemptyset(&sigIntHandler.sa_mask);
    sigIntHandler.sa_flags = 0;

    sigaction(SIGINT, &sigIntHandler, NULL);
    b_continue_session = true;

    double offset = 0; // ms

    rs2::context ctx;
    rs2::device_list devices = ctx.query_devices();
    rs2::device selected_device;
    if (devices.size() == 0)
    {
        std::cerr << "No device connected, please connect a RealSense device" << std::endl;
        return 0;
    }
    else
        selected_device = devices[0];

    std::vector<rs2::sensor> sensors = selected_device.query_sensors();
    int index = 0;

二、根据传感器的类型、名字进行相应的设置,如使能自动曝光补偿、曝光限制、关闭结构光等。

for (rs2::sensor sensor : sensors)
    if (sensor.supports(RS2_CAMERA_INFO_NAME)) {
        ++index;
        if (index == 1) {
            sensor.set_option(RS2_OPTION_ENABLE_AUTO_EXPOSURE, 1);
            sensor.set_option(RS2_OPTION_AUTO_EXPOSURE_LIMIT,5000);
            sensor.set_option(RS2_OPTION_EMITTER_ENABLED, 0); // switch off emitter
        }
        
        get_sensor_option(sensor);
        if (index == 2){
            // RGB camera (not used here...)
            sensor.set_option(RS2_OPTION_EXPOSURE,100.f);
        }

        if (index == 3){
            sensor.set_option(RS2_OPTION_ENABLE_MOTION_CORRECTION,0);
        }
    }

三、此部分可以看出,设置了相机左右目的图片大小640*480,帧率30hz,accel/gyro数据类型为float型。

// Declare RealSense pipeline, encapsulating the actual device and sensors
rs2::pipeline pipe;
// Create a configuration for configuring the pipeline with a non default profile
rs2::config cfg;
cfg.enable_stream(RS2_STREAM_INFRARED, 1, 640, 480, RS2_FORMAT_Y8, 30);
cfg.enable_stream(RS2_STREAM_INFRARED, 2, 640, 480, RS2_FORMAT_Y8, 30);
cfg.enable_stream(RS2_STREAM_ACCEL, RS2_FORMAT_MOTION_XYZ32F);
cfg.enable_stream(RS2_STREAM_GYRO, RS2_FORMAT_MOTION_XYZ32F);

四、读取d435i传感器数据,主要包括左右目相机数据cam_left/cam_right,imu数据imu_stream左目外参Rbc/tbc,右目外参Rbc/tbc,左右目内参intrinsics_left/intrinsics_right

    auto imu_callback = [&](const rs2::frame& frame)
    {
        std::unique_lock<std::mutex> lock(imu_mutex);

        if(rs2::frameset fs = frame.as<rs2::frameset>())
        {
            count_im_buffer++;

            double new_timestamp_image = fs.get_timestamp()*1e-3;
            if(abs(timestamp_image-new_timestamp_image)<0.001){
                // cout << "Two frames with the same timeStamp!!!\n";
                count_im_buffer--;
                return;
            }

            rs2::video_frame ir_frameL = fs.get_infrared_frame(1);
            rs2::video_frame ir_frameR = fs.get_infrared_frame(2);

            imCV = cv::Mat(cv::Size(width_img, height_img), CV_8U, (void*)(ir_frameL.get_data()), cv::Mat::AUTO_STEP);
            imRightCV = cv::Mat(cv::Size(width_img, height_img), CV_8U, (void*)(ir_frameR.get_data()), cv::Mat::AUTO_STEP);

            timestamp_image = fs.get_timestamp()*1e-3;
            image_ready = true;

            while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size())
            {

                int index = v_accel_timestamp_sync.size();
                double target_time = v_gyro_timestamp[index];

                v_accel_data_sync.push_back(current_accel_data);
                v_accel_timestamp_sync.push_back(target_time);
            }

            lock.unlock();
            cond_image_rec.notify_all();
        }
        else if (rs2::motion_frame m_frame = frame.as<rs2::motion_frame>())
        {
            if (m_frame.get_profile().stream_name() == "Gyro")
            {
                // It runs at 200Hz
                v_gyro_data.push_back(m_frame.get_motion_data());
                v_gyro_timestamp.push_back((m_frame.get_timestamp()+offset)*1e-3);
                //rs2_vector gyro_sample = m_frame.get_motion_data();
                //std::cout << "Gyro:" << gyro_sample.x << ", " << gyro_sample.y << ", " << gyro_sample.z << std::endl;
            }
            else if (m_frame.get_profile().stream_name() == "Accel")
            {
                // It runs at 60Hz
                prev_accel_timestamp = current_accel_timestamp;
                prev_accel_data = current_accel_data;

                current_accel_data = m_frame.get_motion_data();
                current_accel_timestamp = (m_frame.get_timestamp()+offset)*1e-3;

                while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size())
                {
                    int index = v_accel_timestamp_sync.size();
                    double target_time = v_gyro_timestamp[index];

                    rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp,
                                                                prev_accel_data, prev_accel_timestamp);

                    v_accel_data_sync.push_back(interp_data);
                    v_accel_timestamp_sync.push_back(target_time);

                }
                // std::cout << "Accel:" << current_accel_data.x << ", " << current_accel_data.y << ", " << current_accel_data.z << std::endl;
            }
        }
    };

    rs2::pipeline_profile pipe_profile = pipe.start(cfg, imu_callback);

    vector<ORB_SLAM3::IMU::Point> vImuMeas;
    rs2::stream_profile cam_left = pipe_profile.get_stream(RS2_STREAM_INFRARED, 1);
    rs2::stream_profile cam_right = pipe_profile.get_stream(RS2_STREAM_INFRARED, 2);


    rs2::stream_profile imu_stream = pipe_profile.get_stream(RS2_STREAM_GYRO);
    float* Rbc = cam_left.get_extrinsics_to(imu_stream).rotation;
    float* tbc = cam_left.get_extrinsics_to(imu_stream).translation;
    std::cout << "Tbc (left) = " << std::endl;
    for(int i = 0; i<3; i++){
        for(int j = 0; j<3; j++)
            std::cout << Rbc[i*3 + j] << ", ";
        std::cout << tbc[i] << "\n";
    }

    float* Rlr = cam_right.get_extrinsics_to(cam_left).rotation;
    float* tlr = cam_right.get_extrinsics_to(cam_left).translation;
    std::cout << "Tlr  = " << std::endl;
    for(int i = 0; i<3; i++){
        for(int j = 0; j<3; j++)
            std::cout << Rlr[i*3 + j] << ", ";
        std::cout << tlr[i] << "\n";
    }



    rs2_intrinsics intrinsics_left = cam_left.as<rs2::video_stream_profile>().get_intrinsics();
    width_img = intrinsics_left.width;
    height_img = intrinsics_left.height;
    cout << "Left camera: \n";
    std::cout << " fx = " << intrinsics_left.fx << std::endl;
    std::cout << " fy = " << intrinsics_left.fy << std::endl;
    std::cout << " cx = " << intrinsics_left.ppx << std::endl;
    std::cout << " cy = " << intrinsics_left.ppy << std::endl;
    std::cout << " height = " << intrinsics_left.height << std::endl;
    std::cout << " width = " << intrinsics_left.width << std::endl;
    std::cout << " Coeff = " << intrinsics_left.coeffs[0] << ", " << intrinsics_left.coeffs[1] << ", " <<
        intrinsics_left.coeffs[2] << ", " << intrinsics_left.coeffs[3] << ", " << intrinsics_left.coeffs[4] << ", " << std::endl;
    std::cout << " Model = " << intrinsics_left.model << std::endl;

    rs2_intrinsics intrinsics_right = cam_right.as<rs2::video_stream_profile>().get_intrinsics();
    width_img = intrinsics_right.width;
    height_img = intrinsics_right.height;
    cout << "Right camera: \n";
    std::cout << " fx = " << intrinsics_right.fx << std::endl;
    std::cout << " fy = " << intrinsics_right.fy << std::endl;
    std::cout << " cx = " << intrinsics_right.ppx << std::endl;
    std::cout << " cy = " << intrinsics_right.ppy << std::endl;
    std::cout << " height = " << intrinsics_right.height << std::endl;
    std::cout << " width = " << intrinsics_right.width << std::endl;
    std::cout << " Coeff = " << intrinsics_right.coeffs[0] << ", " << intrinsics_right.coeffs[1] << ", " <<
        intrinsics_right.coeffs[2] << ", " << intrinsics_right.coeffs[3] << ", " << intrinsics_right.coeffs[4] << ", " << std::endl;
    std::cout << " Model = " << intrinsics_right.model << std::endl;

从一到四部分可以看出,这部分主要是和d435i的交互,主要包括对其检测、设置、读取数据,这部分可以看做是d435i驱动部分。

五、进入slam系统,主要用于初始化系统线程和准备工作

ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::IMU_STEREO, true, 0, file_name);

/**
 * @brief 系统的构造函数,将会启动其他的线程
 * @param strVocFile 词袋文件所在路径
 * @param strSettingsFile 配置文件所在路径
 * @param sensor 传感器类型
 * @param bUseViewer 是否使用可视化界面
 * @param initFr initFr表示初始化帧的id,开始设置为0
 * @param strSequence 序列名,在跟踪线程和局部建图线程用得到
 */
System::System(const string &strVocFile, const string &strSettingsFile, const eSensor sensor,
               const bool bUseViewer, const int initFr, const string &strSequence):
1.输出welcome信息
// Output welcome message
cout << endl <<
"ORB-SLAM3 Copyright (C) 2017-2020 Carlos Campos, Richard Elvira, Juan J. Gómez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza." << endl <<
"ORB-SLAM2 Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza." << endl <<
"This program comes with ABSOLUTELY NO WARRANTY;" << endl  <<
"This is free software, and you are welcome to redistribute it" << endl <<
"under certain conditions. See LICENSE.txt." << endl << endl;

cout << "Input sensor was set to: ";
2.读取配置文件

读取配置文件对应的就是启动./Examples/Stereo-Inertial/Realsense_D435i.yaml文件。针对文件版本不同对于mStrLoadAtlasFromFile、mStrSaveAtlasToFile不同。

//Check settings file
cv::FileStorage fsSettings(strSettingsFile.c_str(), cv::FileStorage::READ);
// 如果打开失败,就输出错误信息
if(!fsSettings.isOpened())
{
   cerr << "Failed to open settings file at: " << strSettingsFile << endl;
   exit(-1);
}

// 查看配置文件版本,不同版本有不同处理方法
cv::FileNode node = fsSettings["File.version"];
if(!node.empty() && node.isString() && node.string() == "1.0")
{
	settings_ = new Settings(strSettingsFile,mSensor);

	// 保存及加载地图的名字
	mStrLoadAtlasFromFile = settings_->atlasLoadFile();
	mStrSaveAtlasToFile = settings_->atlasSaveFile();

	cout << (*settings_) << endl;
}
else
{
	settings_ = nullptr;
	cv::FileNode node = fsSettings["System.LoadAtlasFromFile"];
	if(!node.empty() && node.isString())
	{
		mStrLoadAtlasFromFile = (string)node;
	}

	node = fsSettings["System.SaveAtlasToFile"];
	if(!node.empty() && node.isString())
	{
		mStrSaveAtlasToFile = (string)node;
	}
}
3.是否激活回环
node = fsSettings["loopClosing"];
bool activeLC = true;
if(!node.empty())
{
	activeLC = static_cast<int>(fsSettings["loopClosing"]) != 0;
}
4.词袋文件赋值给mStrVocabularyFilePath,对应启动参数./Vocabulary/ORBvoc.txt
mStrVocabularyFilePath = strVocFile;
5.多地图管理功能

根据mStrLoadAtlasFromFile文件中是否有Atlas,进行相应处理。

(1)若文件中存在:

建立一个新的ORB字典,读取预训练好的ORB字典并返回成功/失败标志,创建关键帧数据库,创建多地图;
######(2)若文件中不存在:
建立一个新的ORB字典,读取预训练好的ORB字典并返回成功/失败标志,创建关键帧数据库,创建关键帧数据库,导入Atlas地图,创建新地图。

bool loadedAtlas = false;

if(mStrLoadAtlasFromFile.empty())
{
	//Load ORB Vocabulary
	cout << endl << "Loading ORB Vocabulary. This could take a while..." << endl;

	// 建立一个新的ORB字典
	mpVocabulary = new ORBVocabulary();
	// 读取预训练好的ORB字典并返回成功/失败标志
	bool bVocLoad = mpVocabulary->loadFromTextFile(strVocFile);
	// 如果加载失败,就输出错误信息
	if(!bVocLoad)
	{
		cerr << "Wrong path to vocabulary. " << endl;
		cerr << "Falied to open at: " << strVocFile << endl;
		exit(-1);
	}
	cout << "Vocabulary loaded!" << endl << endl;

	//Create KeyFrame Database
	// Step 4 创建关键帧数据库
	mpKeyFrameDatabase = new KeyFrameDatabase(*mpVocabulary);

	//Create the Atlas
	// Step 5 创建多地图,参数0表示初始化关键帧id为0
	cout << "Initialization of Atlas from scratch " << endl;
	mpAtlas = new Atlas(0);
}
else
{
	//Load ORB Vocabulary
	cout << endl << "Loading ORB Vocabulary. This could take a while..." << endl;

	mpVocabulary = new ORBVocabulary();
	bool bVocLoad = mpVocabulary->loadFromTextFile(strVocFile);
	if(!bVocLoad)
	{
		cerr << "Wrong path to vocabulary. " << endl;
		cerr << "Falied to open at: " << strVocFile << endl;
		exit(-1);
	}
	cout << "Vocabulary loaded!" << endl << endl;

	//Create KeyFrame Database
	mpKeyFrameDatabase = new KeyFrameDatabase(*mpVocabulary);

	cout << "Load File" << endl;

	// Load the file with an earlier session
	//clock_t start = clock();
	cout << "Initialization of Atlas from file: " << mStrLoadAtlasFromFile << endl;
	bool isRead = LoadAtlas(FileType::BINARY_FILE);

	if(!isRead)
	{
		cout << "Error to load the file, please try with other session file or vocabulary file" << endl;
		exit(-1);
	}

	loadedAtlas = true;

	mpAtlas->CreateNewMap();
}
6.此部分根据是否存在imu数据进行初始化
// 如果是有imu的传感器类型,设置mbIsInertial = true;以后的跟踪和预积分将和这个标志有关
if (mSensor==IMU_STEREO || mSensor==IMU_MONOCULAR || mSensor==IMU_RGBD)
	mpAtlas->SetInertialSensor();
7.依次创建跟踪、局部建图、闭环、显示线程
(1)创建用于显示帧和地图的类,由Viewer调用
//Create Drawers. These are used by the Viewer
mpFrameDrawer = new FrameDrawer(mpAtlas);
mpMapDrawer = new MapDrawer(mpAtlas, strSettingsFile, settings_);
(2)创建跟踪线程(主线程),不会立刻开启,会在对图像和imu预处理后在main主线程种执行,(main)SLAM.TrackStereo()–>mpTracker->GrabImageStereo–>Track()开启跟踪。
//Initialize the Tracking thread
//(it will live in the main thread of execution, the one that called this constructor)
cout << "Seq. Name: " << strSequence << endl;
mpTracker = new Tracking(this, mpVocabulary, mpFrameDrawer, mpMapDrawer,					 mpAtlas, mpKeyFrameDatabase, strSettingsFile, mSensor, settings_, strSequence);
(3)创建并开启local mapping 线程,线程入口LocalMapping::Run
//Initialize the Local Mapping thread and launch
mpLocalMapper = new LocalMapping(this, mpAtlas, mSensor==MONOCULAR || mSensor==IMU_MONOCULAR,
		mSensor==IMU_MONOCULAR || mSensor==IMU_STEREO || mSensor==IMU_RGBD, strSequence);
mptLocalMapping = new thread(&ORB_SLAM3::LocalMapping::Run,mpLocalMapper);
mpLocalMapper->mInitFr = initFr;
(4)设置最远3D地图点的深度值,如果超过阈值,说明可能三角化不成功,丢弃
if(settings_)
	mpLocalMapper->mThFarPoints = settings_->thFarPoints();
else
	mpLocalMapper->mThFarPoints = fsSettings["thFarPoints"];
	
if(mpLocalMapper->mThFarPoints!=0)
{
	cout << "Discard points further than " << mpLocalMapper->mThFarPoints << " m from current camera" << endl;
	mpLocalMapper->mbFarPoints = true;
}
else
	mpLocalMapper->mbFarPoints = false;
(5)创建并开启闭环线程,程序入口LoopCloing::Run
//Initialize the Loop Closing thread and launch
// mSensor!=MONOCULAR && mSensor!=IMU_MONOCULAR
mpLoopCloser = new LoopClosing(mpAtlas, mpKeyFrameDatabase, mpVocabulary, mSensor!=MONOCULAR, activeLC); // mSensor!=MONOCULAR);
mptLoopClosing = new thread(&ORB_SLAM3::LoopClosing::Run, mpLoopCloser);
(6)设置线程间指针
//Set pointers between threads
mpTracker->SetLocalMapper(mpLocalMapper);
mpTracker->SetLoopClosing(mpLoopCloser);

mpLocalMapper->SetTracker(mpTracker);
mpLocalMapper->SetLoopCloser(mpLoopCloser);

mpLoopCloser->SetTracker(mpTracker);
mpLoopCloser->SetLocalMapper(mpLocalMapper);	
(7)创建并开启显示线程,程序入口Viewer::Run
//Initialize the Viewer thread and launch
if(bUseViewer)
//if(false) // TODO
{
	mpViewer = new Viewer(this, mpFrameDrawer,mpMapDrawer,mpTracker,strSettingsFile,settings_);
	mptViewer = new thread(&Viewer::Run, mpViewer);
	mpTracker->SetViewer(mpViewer);
	mpLoopCloser->mpViewer = mpViewer;
	mpViewer->both = mpFrameDrawer->both;
}
// Fix verbosity
// 打印输出中间的信息,设置为安静模式
Verbose::SetTh(Verbose::VERBOSITY_QUIET);

至此,Systemf完成。

6.此部分清空imu数据向量
// Clear IMU vectors
v_gyro_data.clear();
v_gyro_timestamp.clear();
v_accel_data_sync.clear();
v_accel_timestamp_sync.clear();
7.开启while(!isShutDown())主循环
8.根据时间戳对加速度进行插值
while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size())
{
	int index = v_accel_timestamp_sync.size();
	double target_time = v_gyro_timestamp[index];

	rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp, prev_accel_data, prev_accel_timestamp);

	v_accel_data_sync.push_back(interp_data);
	// v_accel_data_sync.push_back(current_accel_data); // 0 interpolation
	v_accel_timestamp_sync.push_back(target_time);
}

九、压入数据放入vImuMeas

for(int i=0; i<vGyro.size(); ++i)
{
	ORB_SLAM3::IMU::Point lastPoint(vAccel[i].x, vAccel[i].y, vAccel[i].z,
						  vGyro[i].x, vGyro[i].y, vGyro[i].z,
						  vGyro_times[i]);
	vImuMeas.push_back(lastPoint);
}

十、正式开启双目追踪线程

// Stereo images are already rectified.
SLAM.TrackStereo(im, imRight, timestamp, vImuMeas);

至此,stereo_inertial_realsense_D435i启动流程就全部完成。其中,跟踪Track、局部建图LocalMapping、闭环LoopCloing、显示线程Viewer后续再分子序列详细叙述。

参考:

1.https://blog.csdn.net/u010196944/article/details/128972333?spm=1001.2014.3001.5501
2.https://blog.csdn.net/u010196944/article/details/127240169?spm=1001.2014.3001.5501文章来源地址https://www.toymoban.com/news/detail-533162.html

到了这里,关于ORB_SLAM3启动流程以stereo_inertial_realsense_D435i为例的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【ORB_SLAM2算法中逐函数讲解】

    在ORB-SLAM2算法中, TrackReferenceKeyFrame() 函数主要用于根据参考关键帧(Reference KeyFrame)来进行相机位姿估计。这个函数在跟踪过程中起到关键作用,它使用当前帧与参考关键帧之间的匹配点进行位姿估计,从而实现视觉里程计的功能。以下是这个函数中的主要操作: 计算当前

    2023年04月25日
    浏览(42)
  • 在realsense D455相机上运行orb_slam3

    参考https://blog.csdn.net/weixin_42990464/article/details/133019718?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522171109916816777224423276%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257Drequest_id=171109916816777224423276biz_id=0utm_medium=distribute.pc_search_result.none-task-blog-2 blog first_rank_ecpm_v1~rank_v31_ecpm

    2024年03月26日
    浏览(56)
  • RGB-L:基于激光雷达增强的ORB_SLAM3(已开源)

    点云PCL免费知识星球,点云论文速读。 文章:RGB-L: Enhancing Indirect Visual SLAM using LiDAR-based Dense Depth Maps 作者:Florian Sauerbeck, Benjamin Obermeier, Martin Rudolph 编辑:点云PCL 代码:https://github.com/TUMFTM/ORB_SLAM3_RGBL.git 欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈。文章仅

    2024年02月07日
    浏览(48)
  • orb_slam3实现保存/加载地图功能and发布位姿功能

    先说方法:在加载的相机参数文件.yaml的最前面加上下面两行就行。 第一行表示从本地加载名为\\\"MH01_to_MH05_stereo_inertial.osa\\\"的地图文件,第二行表示保存名为\\\"MH01_to_MH05_stereo_inertial.osa\\\"的地图到本地。第一次运行建图时注释掉第一行,只使用第二行,加载地图重定位时反过来,

    2024年02月15日
    浏览(45)
  • ORB_SLAM3 ROS编译及使用D435I运行

    本文介绍ORB_SLAM3编译、运行中遇到问题,尤其涉及到ORB_SLAM3 ROS编译遇到的问题。最后通过使用D435I完成在室内环境下运行。 本文运行环境在Ubuntu20.04 + ROS noetic。 一、ORB_SLAM3 依赖安装 ORB_SLAM3 依赖的安装,有同学喜欢上来就baidu,按照别人介绍的安装,这样做大多数时候会出现

    2024年02月03日
    浏览(51)
  • ORB_SLAM2配置——基于Ubuntu20.04+ROS+gazebo仿真

    一、引言 ORB-SLAM2,它是基于单目、双目或RGB-D相机的一个完整的SLAM系统,其中包括地图重用、回环检测和重定位功能。这个系统可以适用于多种环境,无论是室内小型手持设备,还是工厂环境中飞行的无人机和城市中行驶的车辆,其都可以在标准CPU上实时运行。该系统的后端

    2023年04月13日
    浏览(49)
  • ORB_SLAM3配置及修改——将图像、点云用ROS消息发布(基于无人机仿真)

            本文有点长,可以根据目录跳转到想看的部分。因为仿真和应用环境不同,可能例程的运行方式(输入话题等)有所不同,但第三部分有关ORB_SLAM3相机仿真标定、第四部分有关ORB_SLAM3源码修改的部分是通用的。 目录 一、仿真环境配置 1.双系统安装 ① 工具准备 ②

    2024年04月10日
    浏览(50)
  • ORB_SLAM2算法中如何计算右目和左目两个特征点的是否匹配?

    在进行特征匹配时使用的循环。 vCandidates 是

    2024年02月06日
    浏览(44)
  • 记录:ubuntu20.04+ORB_SLAM2_with_pointcloud_map+ROS noetic

    由于相机实时在线运行需要ROS,但Ubuntu22.04只支持ROS2,于是重装Ubuntu20.04。 上一篇文章跑通的是官方版本的ORB_SLAM2,不支持点云显示。高翔修改版本支持RGB-D相机的点云显示功能。 高翔修改版本ORB_SLAM2:https://github.com/gaoxiang12/ORBSLAM2_with_pointcloud_map 环境:ubunntu20.04、opencv3.4.

    2024年02月11日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包