YOLOv5训练速度慢 GPU占用率低

这篇具有很好参考价值的文章主要介绍了YOLOv5训练速度慢 GPU占用率低。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

   用Yolo5跑自己的数据集,torch_GPU和CUDA都安装了,使用GPU跑模型,GPU的占用率为1%,设置的epoch为300,batch size为32,大概6min多/epoch,数据集很小,刚过一千。在网上查了相关的文章,发现可能是读取数据造成的,把cache-image的action='store_true'改成'store_false'。 

YOLOv5训练速度慢 GPU占用率低,深度学习,人工智能,python

改成

YOLOv5训练速度慢 GPU占用率低,深度学习,人工智能,python

修改后 每epoch大概是13s!超级快,GPU的占用率变到33%,CPU的占用率50%。

后面再想办法改一改,计算机小白学习好难,论文好难(哀嚎~)!文章来源地址https://www.toymoban.com/news/detail-534823.html

到了这里,关于YOLOv5训练速度慢 GPU占用率低的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLOv5训练速度慢的一些解决方法

        博主电脑配置是AMD R5 3600,Nvidia RTX3060 12G,16G 3200MHz内存,训练数据集是自建数据集,大约1200张图片,3个检测目标。     训练YOLOv5-5.0版本的模型参数设置,模型是yolov5s,epoch 150(如果想要更好的mAP@0.5:0.95指标可以设置的更大,博主这个收敛的太快了就没设太多),bat

    2024年01月16日
    浏览(45)
  • 基于YOLOv5的停车位检测系统(清新UI+深度学习+训练数据集)

    摘要:基于YOLOv5的停车位检测系统用于露天停车场车位检测,应用深度学习技术检测停车位是否占用,以辅助停车场对车位进行智能化管理。在介绍算法原理的同时,给出 P y t h o n 的实现代码、训练数据集以及 P y Q t 的UI界面。博文提供了完整的Python代码和使用教程,适合新

    2024年02月11日
    浏览(48)
  • yolov5训练加速--一个可能忽视的细节(mmdetection也一样),为什么显卡使用率老是为0?

    本文仅讨论节省图片加载时间问题,这里面可能有一些容易忽视的细节。yolov5的训练参数里面有一个--cache,默认是ram,就是把解码后的图片保存在内存中。也可以是disk,就会把解码后的图片保存在硬盘上。  解码后的图片就是numpy数组啦,保存为.npy文件  这里可能有一个问

    2024年02月04日
    浏览(82)
  • 在pycharm中配置GPU训练环境(Anaconda)(yolov5)

    1. 具体的配置过程: 2. 在指定位置(路径)创建虚拟环境: 3. conda常用命令: 4: 在跑模型时候遇到的一些问题:         4.1: conda添加python解释器找不到对应的python.exe文件         4.2: 报错“OSError: [WinError 1455] 页面文件太小,无法完成操作。”         4.3: 报错“

    2024年02月06日
    浏览(44)
  • 人工智能图像识别分析之——Yolov5模型训练

    上一课讲述了Yolov5模型环境搭建的过程 这一课讲Yolov5模型训练的过程 进行模型训练前,首先要先进行样本标注,标注后产生标注文件,将图片源文件和标注文件进行文件划分,本文以2000张负样本进行训练。 1.新建三级目录datasets/images/train、datasets/images/val 2.新建三级目录da

    2024年02月01日
    浏览(75)
  • 《人工智能专栏》必读150篇 | 专栏介绍 & 专栏目录 & Python与PyTorch | 机器与深度学习 | 目标检测 | YOLOv5及改进 | YOLOv8及改进 | 关键知识点 | 工具

    各位读者们好,本专栏最近刚推出,限于个人能力有限,不免会有诸多错误,敬请私信反馈给我,接受善意的提示,后期我会改正,谢谢,感谢。 第一步 :[ 购买点击跳转 ] 第二步 : 代码函数调用关系图(全网最详尽-重要) 因文档特殊,不能在博客正确显示,请移步以下链接

    2024年02月02日
    浏览(78)
  • 【深度学习】yolov5 tag7.0 实例分割 从0到1的体会,从模型训练,到量化完成,bug避坑

    这里记录下yolov5 tag7.0的实例分割,因为也用过paddle家族的实例分割,能够训练出来,但是开放restiful api时遇到点小问题,还是yolov爽啊!!通过这篇博文,您可以一步步的搭建自己的分割网络。 git仓库:https://github.com/ultralytics/yolov5/tree/v7.0 在tag7.0开始支持的,号称sota,在mas

    2024年02月06日
    浏览(50)
  • Mac Apple Silicon M1/M2 homebrew miniforge conda pytorch yolov5深度学习环境搭建并简单测试MPS GPU加速

    笔者使用的是一台M2版本的Macbook Air,虽然苹果作为深度学习的训练机不太合适,但是由于macbook作为打字机实在是无可挑剔,所以使用macbook调试一下pytorch的代码再放到集群上训练或者直接在mac上调试运行代码都是不错的体验,本文以在mac上直接调试yolov5为目标,大概记录一下

    2024年02月02日
    浏览(52)
  • 配置使用云服务器训练神经网络模型——在阿里GPU服务器训练yolov5模型

    对于没有GPU训练机的人来讲,使用云服务器训练自己的模型应该最最优选择,只是在训练的时候开个按时计费的服务器,训练完成后保存环境镜像之后,可以完全停掉服务器,期间不产生任何费用,下次再训练时,启动环境就可以,很容易保护好自己的训练环境不受污染。

    2024年02月06日
    浏览(63)
  • 一块RTX 3090加速训练YOLOv5s,时间减少11个小时,速度提升20%

    作者| BBuf 很高兴为大家带来One-YOLOv5的最新进展,在《一个更快的YOLOv5问世,附送全面中文解析教程》发布后收到了很多算法工程师朋友的关注,十分感谢。 不过,可能你也在思考一个问题:虽然OneFlow的兼容性做得很好,可以很方便地移植YOLOv5并使用OneFlow后端来进行训练,

    2024年02月05日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包