MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用

这篇具有很好参考价值的文章主要介绍了MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、Simulink 系统仿真实例

  • 下面的应用实例我们将分别采用不同建模方法为系统建模并仿真。
  • 例如,有初始状态为 0 的二阶微分方程 x ′ ′ + 0.2 x ′ + 0.4 x = 0.2 u ( t ) x''+0.2x'+0.4x=0.2u(t) x′′+0.2x+0.4x=0.2u(t),其中 u ( t ) u(t) u(t) 是单位阶跃函数,对此我们尝试建立系统模型并仿真 。

1. 方法一

  • 我们利用 Integrator(积分器)模块直接构造求解微分方程的模型。
  • 我们将原微分方程改写为 x ′ ′ = 0.2 u ( t ) − 0.2 x ′ − 0.4 x x''=0.2u(t)-0.2x'-0.4x x′′=0.2u(t)0.2x0.4x
  • x ′ ′ x'' x′′ 经积分作用得 x ‘ x‘ x x ′ x' x 再经积分模块作用就得 x x x,而 x ′ x' x x x x 经代数运算又产生 x ′ ′ x'' x′′,据此可以建立系统模型并仿真。步骤如下。
  • (1) 利用 Simulink 模块库中的基本模块不难建立如下图所示的系统模型。

MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用,MATLAB,matlab,开发语言

  • 模型中各个模块说明如下。
  • ① u(t) 输入模块:它的 Step time 被设置为 0,模块名称由原来的 Step 改为 u(t)。
  • ② Gs 增益模块:增益参数 Gain 设置为 0.2。
  • ③ Add 求和模块:其图标形状 Icon shape 设置为 rectangular,符号列表 List of signs 设置为 ±-。
  • ④ Integrator 积分模块:参数不需要改变。
  • ⑤ G1 和 G2 反馈增益模块:增益参数分别设置为 0.4 和 0.2,它们的方向翻转可借助快捷菜单中的 Rotate & Flip ⟶ \longrightarrow Flip Block 命令或模型编辑窗口的 Diagram ⟶ \longrightarrow Rotate & Flip ⟶ \longrightarrow Flip Block 命令实现。
  • (2) 设置系统仿真参数。打开 Configuration Parameters 窗口,把仿真的终止时间设置为 20s。
  • (3) 仿真操作。双击示波器图标,打开示波器窗口。单击模型编辑窗口工具栏中的 Run 按钮,就可在示波器窗口中看到仿真结果的变化曲线,如下图所示。

MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用,MATLAB,matlab,开发语言

2. 方法二

  • 利用传递函数模块(Transfer Fcn)建模。
  • 对方程 x ′ ′ + 0.2 x ′ + 0.4 x = 0.2 u ( t ) x''+0.2x'+0.4x=0.2u(t) x′′+0.2x+0.4x=0.2u(t) 两边取 Laplace 变换,得 s 2 X ( s ) + 0.2 s X ( s ) + 0.4 X ( s ) = 0.2 U ( s ) s^{2}X(s)+0.2sX(s)+0.4X(s)=0.2U(s) s2X(s)+0.2sX(s)+0.4X(s)=0.2U(s)
  • 经整理得传递函数 G ( s ) = X ( s ) U ( s ) = 0.2 s 2 + 0.2 s + 0.4 G(s)=\frac{X(s)}{U(s)}=\frac{0.2}{s^{2}+0.2s+0.4} G(s)=U(s)X(s)=s2+0.2s+0.40.2
  • 在 Continuous 模块库中有标准的传递函数(Transfer Fcn)模块可供调用,于是,就可以构建求解微分方程的模型并仿真。根据系统传递函数构建如下图所示的仿真模型。

MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用,MATLAB,matlab,开发语言

  • 模型中各个模块说明如下。
  • (1) u(t) 模块:设置 Step time 为 0。
  • (2) G(S) 模块:双击 Transfer Fcn 模块,打开参数设置对话框,在 Numerator coefficients 文本框中输入传递函数的分子多项式系数 [0.2],在 Denominator coefficients 文本框中输入传递函数的分母多项式的系数 [1,0.2,0.4],如下图所示。

MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用,MATLAB,matlab,开发语言

  • 以后的操作与方法 1 相同。

3. 方法三

  • 利用状态方程模块(State-Space)建模。
  • 若令 x 1 = x x_{1}=x x1=x x 2 = x ′ x_{2}=x' x2=x,那么微分方程 x ′ ′ + 0.2 x ′ + 0.4 x = 0.2 u ( t ) x''+0.2x'+0.4x=0.2u(t) x′′+0.2x+0.4x=0.2u(t) 可写成 x ′ = [ x 1 ′ x 2 ′ ] = [ 0 1 − 0.4 − 0.2 ] [ x 1 x 2 ] + [ 0 0.2 ] u ( t ) x'=\begin{bmatrix}x^{'}_{1} \\x^{'}_{2} \end{bmatrix}=\begin{bmatrix} 0&1 \\ -0.4&-0.2 \end{bmatrix}\begin{bmatrix}x_{1} \\x_{2} \end{bmatrix}+\begin{bmatrix}0 \\0.2 \end{bmatrix}u(t) x=[x1x2]=[00.410.2][x1x2]+[00.2]u(t)
  • 写成状态方程为 { x ′ = A x + B u y = C x + D u \left\{\begin{matrix}x^{'}=Ax+Bu \\y=Cx+Du \end{matrix}\right. {x=Ax+Buy=Cx+Du
  • 式中, A = [ 0 1 − 0.4 − 0.2 ] A=\begin{bmatrix} 0&1 \\ -0.4 &-0.2 \end{bmatrix} A=[00.410.2] B = [ 0 − 0.2 ] B=\begin{bmatrix} 0 \\ -0.2 \end{bmatrix} B=[00.2] C = [ 1 0 ] C=\begin{bmatrix} 1&0 \end{bmatrix} C=[10] D = 0 D=0 D=0
  • 在 Continuous 模块库中有标准的状态方程(State-Space)模块可供调用,于是,就可以构建求解微分方程的模型并仿真。根据系统状态方程构建如下图所示的仿真模型。

MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用,MATLAB,matlab,开发语言

  • 模型中各个模块说明如下:
  • (1) u(t) 输入模块:它的 Step time 被设置为 0。
  • (2) State-Space 模块:A、B、C、D 各文本框中依次输入 [0,1;-0.4,-0.2]、[0;0.2]、[1,0] 和 0,如下图所示。

MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用,MATLAB,matlab,开发语言

  • 后面的操作与方法 1 相同。

二、S 函数的设计与应用

  • S 函数用于开发新的 Simulink 通用功能模块,是一种对模块库进行扩展的工具。S 函数可以采用 MATLAB 语言以及 C、C++、FORTRAN 等语言编写。
  • 在 S 函数中使用文本方式输入公式、方程,非常适合复杂动态系统的数学描述,并且在仿真过程中可以对仿真进行更精确的控制。
  • S 函数称为系统函数(System Function),采用非图形化的方式描述功能模块。
  • MATLAB 语言编写的 S 函数可以充分利用 MATLAB 所提供的丰富资源,方便地调用各种工具箱函数和图形函数使用;
  • C 语言编写的 S 函数可以实现对操作系统的访问,如实现与其他进程的通信和同步等。
  • 非 MATLAB 语言编写的 S 函数需要用编译器生成 MEX 文件。

1. 用 MATLAB 语言编写 S 函数

  • S 函数有固定的程序格式,可以从 Simulink 提供的 S 函数模板程序开始构建自己的 S 函数。

1.1 主程序

  • S 函数主程序的引导语句如下:
function [sys,x0,str,ts]=fname(t,x,u,flag)
  • 其中,fname 是 S 函数的函数名,t、x、u、flag 分别为仿真时间、状态向量、输入向量和子程序调用标志。 flag 控制在仿真的各阶段调用 S 函数的哪一个子程序,其含义和有关信息如下表所示。
取值 功能 调用函数名 返回参数
0 初始化 mdllnitializeSizes sys 为初始化参数,x0、str、ts 如定义
1 计算连续状态变量的导数 mdlDerivatives sys 返回连续状态
2 计算离散状态变量的更新 mdIUpdate sys 返回离散状态
3 计算输出信号 mdlOutputs sys 返回系统输出
4 计算下一个采样时刻 mdlGetTimeOfNextVarHit sys 返回下一步仿真的时间
9 结束仿真任务 mdlTerminate
  • Simulink 每次调用 S 函数时,必须给出这 4 个参数。sys、x0、str 和 ts 是 S 函数的返回参数。
  • sys 是一个返回参数的通用符号,它得到何种参数取决于 flag 值。例如,flag=3 时,sys 得到的是 S 函数的输出向量值。
  • x0 是初始状态值,如果系统中没有状态变量,x0 将得到一个空阵。
  • str 仅用于系统模型同 S 函数 API(应用程序编程接口)的一致性校验。对于 M 文件 S 函数,它将被置成一个空阵。
  • ts 是一个两列矩阵,一列是 S 函数中各状态变量的采样周期,另一列是相应的采样时间的偏移量。采样周期按递增顺序排列,ts 中的一行对应一个采样周期。对于连续系统,采样周期和偏移量都应置成 0。如果取采样周期为 -1,则将继承输入信号的采样周期。
  • 此外,在主程序输入参数中还可以包括用户自定义参数表: pl,p2,…,pn,这也就是希望赋给 S 函数的可选变量,其值通过相应 S 函数的参数对话框设置,也可以在命令行窗口赋值。
  • 于是 S 函数主程序的引导语句可以写成
function [sys,x0,str,ts]=fname(t,x,u,flag,pl,p2,,pn)
  • 主程序采用 switch-case 语句,引导 Simulink 到正确的子程序。

1.2 子程序

  • M 文件 S 函数共有 6 个子程序,供 Simulink 在仿真的不同阶段调用,这些子程序的前缀为 mdl。
  • 每一次调用 S 函数时,都要给出一个 flag 值,实际执行 S 函数中与该 flag 值对应的那个子程序。
  • Simulink 在仿真的不同阶段,需要调用 S 函数中不同的子程序。
  • (1) 初始化子程序 mdlInitializeSizes。子程序 mdlInitializeSizes 定义 S 函数参数,如采样时间、输入量、输出量、状态变量的个数以及其他特征。
  • 为了向 Simulink 提供这些信息,在子程序 mdlInitializeSizes 的开始处,应调用 simsizes 函数,这个函数返回一个 sizes 结构,结构的成员 sizes.NumContStates、sizes.NumDiscStates、sizes.NumOutputs 和 sizes.NumInputs 分别表示连续状态变量的个数、离散状态变量的个数、输出的个数和输入的个数。这 4 个值可以置为 -1,使其大小动态改变。
  • 成员 sizes.DirFeedthrough 是直通标志,即输入信号是否直接在输出端出现的标志,是否设定为直通,取决于输出是否为输入的函数,或者取样时间是否为输入的函数。1 表示 yes,0 表示 no。成员 sizes.NumSampleTimes 是模块采样周期的个数,一般取 1。
  • 按照要求设置好的结构 sizes 用 sys=simsizes(sizes) 语句赋给 sys 参数。除了 sys 外,还应该设置系统的初始状态变量 x0、说明变量 str 和采样周期变量 ts。
  • (2) 其他子程序。状态的动态更新使用 mdlDerivatives 和 mdIUpdate 两个子程序,前者用于连续状态的更新,后者用于离散状态的更新。这些函数的输出值,即相应的状态,均由 sys 变量返回。
  • 对于同时含有连续状态和离散状态的混合系统,则需要同时写出这两个函数来分别描述连续状态和离散状态。
  • 模块输出信号的计算使用 mdlOutputs 子程序,系统的输出仍由 sys变量返回。
  • 一般应用中很少使用 flag 为 4 和 9 的情况,mdlGetTimeOfNextVarHit 和 mdlTerminate 两个子程序较少使用。

2. S 函数的应用

  • 下面来看两个简单的 M 文件 S 函数例子。
  • 例如,我们采用 S 函数实现 y = n x y=nx y=nx,即把一个输入信号放大 n n n 倍。
  • (1) 利用 MATLAB 语言编写 S 函数,程序如下。
%****************************************
%S函数timesn.m,其输出是输入的n倍
%****************************************
function [sys,x0,str,ts]=timesn(t,x,u,flag,n)
switch flag
    case 0
        [sys,x0,str,ts]=mdlInitializeSizes;         %初始化
    case 3
        sys=mdloutputs(t,x,u,n);                    %计算输出量
    case {1,2,4,9}
        sys=[];
    otherwise                                       %出错处理
        error(num2str(flag));
end
%****************************************
%mdlInitializesizes:当flag为0时进行整个系统的初始化
%******************** ********************
function [sys,x0,str,ts]=mdlInitializeSizes()       
%调用函数simsizes以创建结构sizes
sizes=simsizes;
%用初始化信息填充结构sizes
sizes.NumContStates=0;          %无连续状态
sizes.NumDiscStates=0;          %无离散状态
sizes.NumOutputs=1;             %有一个输出量
sizes.NumInputs=1;              %有一个输入信号
sizes.DirFeedthrough=1;         %输出量中含有输入量
sizes.NumSampleTimes=1;         %单个采样周期
%根据上面的设置设定系统初始化参数
sys=simsizes(sizes);
%给其他返回参数赋值
x0=[];                          %设置初始状态为零状态
str=[];                         %将str变量设置为空字符串
ts=[-1,0];                      %假定继承输入信号的采样周期
%初始化子程序结束
%****************************************
% mdlOutputs:当flag值为3时,计算输出量
%****************************************
function sys=mdloutputs(t,x,u,n)
sys=n*u;
%输出量计算子程序结束
  • 将该程序以文件名 timesn.m 存盘。编好 S 函数后,就可以对该模块进行封装和测试了。
  • (2) 模块的封装与测试。
  • ① 建立 S-Function 模块和编写的S函数文件之间的联系。新建一个模型,向模型编辑窗口中添加 User-Defined Functions 子模块库中的 S-Function 模块、Sine Wave 模块和 Scope 模块,构建如下图所示的仿真模型。

MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用,MATLAB,matlab,开发语言

  • 在模型编辑窗口中双击 S-Function 模块打开如下图所示的参数对话框,在 S-functionname 编辑框中输入 S 函数名 timesn 在 S-function parameters 编辑框中输入外部参数 n。
  • n 可以在 MATLAB 工作空间中用命令定义。如果有多个外部参数,参数之间用逗号分隔。

MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用,MATLAB,matlab,开发语言

  • ② 模型封装。其具体操作与子系统的封装类似。在模型编辑窗口选中 S-Function 模块,再选择 Diagram ⟶ \longrightarrow Mask ⟶ \longrightarrow Create Mask 命令,或按 Ctrl+M 键,打开封装编辑器,选择 Parameters & Dialog 选项卡,在左侧控件工具箱中单击 Edit 工具,往中间的 Dialog box 区域的控件列表中添加编辑框控件 #1,选中该控件后,在右侧的 Property editor 区域中,在 Name 栏输入 n,Prompt 栏输入 “放大倍数”,勾选 Evaluate 复选框,具体如下图所示。

MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用,MATLAB,matlab,开发语言- 设置完成后单击 OK 按钮。S 函数模块被封装后,双击它,则得到如下图所示的模块参数对话框。

MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用,MATLAB,matlab,开发语言

  • 当输入 n 的值为 10 时,得到的仿真结果如下图所示。

MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用,MATLAB,matlab,开发语言

  • 例如,我们采用 S 函数构造非线性分段函数 y = { 3 x x < 1 3 1 ≤ x < 3 3 − ( x − 3 ) 2 3 ≤ x < 4 2 4 ≤ x < 5 2 − ( x − 5 ) 2 5 ≤ x < 6 1 x ≥ 6 y=\left\{\begin{matrix} 3\sqrt{x}& x< 1\\ 3 & 1\le x< 3\\ 3-(x-3)^{2} &3\le x< 4 \\ 2 & 4\le x< 5\\ 2-(x-5)^{2} & 5\le x< 6\\ 1 &x\ge 6 \end{matrix}\right. y= 3x 33(x3)222(x5)21x<11x<33x<44x<55x<6x6
  • (1) 利用 MTALAB 语言编写 S 函数,程序如下:
function [sys,x0,str,ts]=sfunction(t,x, u,flag)
switch flag
    case 0
        [sys,x0,str,ts]=mdlInitializeSizes;
    case 3
        sys=mdlOutputs(t,x,u);
    case {1,2,4,9}
        sys=[];
    otherwise
        error(['Unhandled flag=',num2str(flag)]);
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes=simsizes;
sizes.NumContStates=0;
sizes.NumDiscStates=0;
sizes.NumOutputs=1;
sizes.NumInputs=1;
sizes.DirFeedthrough=1;
sizes.NumSampleTimes=1;
sys=simsizes(sizes);
x0=[];
str=[];
ts=[0,0];
function sys=mdlOutputs(t,x,u)
if u<1
    sys=3*sqrt(u);
elseif u>=1&&u<3
    sys=3;
elseif u>=3&&u<4
    sys=3-(u-3)^2;
elseif u>=4&&u<5
    sys=2;
elseif u>=5&&u<6
    sys=2-(u-5)^2;
else
    sys=1;
end
  • 将该程序以文件名 sfunction.m 存盘。
  • (2) 模块的测试。向模型编辑窗口中添加 S-Function 模块,并在其参数设置对话框中输入 M 文件名 sfunction,构建如下图所示的仿真模型。

MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用,MATLAB,matlab,开发语言

  • 运行即可得到如下图所示的仿真结果。

MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用,MATLAB,matlab,开发语言文章来源地址https://www.toymoban.com/news/detail-535217.html

到了这里,关于MATLAB 之 Simulink 系统仿真实例和 S 函数的设计与应用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用 MATLAB 和 Simulink 对雷达系统进行建模和仿真

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Simulink、Matlab代码实现

    2024年02月11日
    浏览(40)
  • MATLAB 之 Simulink 操作基础和系统仿真模型的建立

    Simulink 是 MATLAB 的重要组成部分既适用于线性系统,也适用于非线性系统,既适用于连续系统,也适用于离散系统和连续与离散混合系统。既适用于定常系统,也适用于时变系统。 1.1 Simulink 的启动 在安装 MATLAB 的过程中。若选中了 Simulink 组件,则在 MATLAB 安装完成后,Simul

    2024年02月08日
    浏览(37)
  • 独立逆变器系统MATLAB-simulink建模及仿真

             独立逆变器不同于并网逆变器,是一种将直流电转换为特定频率与幅值交流电的电力电子装置,一般作为EPS、UPS以及孤岛微电网系统的雏形装置。由于其负载的多样性导致独立逆变器必须具备快速适应负载变化的特性。本设计通过对独立逆变器系统传递函数分析并

    2023年04月08日
    浏览(44)
  • DC/DC:单端反激直流变换电路设计及matlab/Simulink仿真

    直流单端反激变换电路在开关管导通时电源将电能转为磁场能储存在变压器中,当开关管关断时再将磁能转变为电能传送到负载。 单端反激变换电路是由升降压(Buck-Boost)变换电路派生而来的。电路图如图所示 变压器绕组的电感L1的值为  实际电感值为1.3Lc。 电容值   开关

    2024年02月11日
    浏览(44)
  • 【电力系统】基于MATLAB Simulink进行飞轮储能系统和永磁同步电机的仿真

    目录 飞轮储能系统和永磁同步电机的仿真 基于MATLAB Simulink进行飞轮储能系统和永磁同步电机的仿真,可以按照以下步骤操作:

    2023年04月22日
    浏览(56)
  • Matlab/Simulink六自由度机器人运动学与控制系统仿真(一)【附源文件】

    本文章为系列文章,以IRB1600机器人为例,建立机器人正运动、逆运动学、控制系统模型,并在simulink中进行仿真,与理论计算结果进行对比验证 (一) irb1600机器人坐标系建立、正运动学计算与simulink验证 (二) 机器人逆运动学计算 (三) 机器人运动学控制系统仿真 本文以

    2024年01月16日
    浏览(70)
  • SVPWM控制技术+Matlab/Simulink仿真详解

    本章节首先介绍SVPWM控制技术的原理,然后详细分析SVPWM控制算法的具体实现方式,并通过Matlab/Simulink对SVPWM控制算法进行仿真分析,最后通过永磁同步电机矢量控制的实例进行算法实现。 SPWM控制技术主要控制逆变器的输出电压尽量接近正弦波,并未顾及输出电流的波形。电

    2024年01月22日
    浏览(42)
  • 直流无刷电机及Matlab/Simulink驱动仿真

    系列文章将更新直流无刷电机的工作原理、仿真控制以及应用STM32开发板与驱动板完成对直流无刷电机的实际控制。 直流无刷电机(Brushless Direct Current Motor,BLDC)没有了直流有刷电机的电刷及换向器等结构,线圈绕组不参与旋转而是作为定子,永磁体作为转子,通过控制线圈

    2024年02月05日
    浏览(86)
  • 【开关电源RC吸收电路matlab simulink仿真】

    近期遇到了需要加吸收电路的需求,但是查阅网上资料全都是根据经验公式求得,并没有给出吸收完后的效果预测,因此自己动手做个方法。 由于变压器漏感和整流二极管电容的存在整流二极管两端电压会产生过冲,如果电路或变压器设计的不好过冲甚至能达到两倍,迫使你

    2024年02月08日
    浏览(48)
  • MATLAB使用Simulink 进行建模与仿真方法 - Simulink基本操作与入门教程

    Simulink 是 MATLAB 很强大的功能组件,广泛用于系统建模、仿真和分析。下面分享给大家MATLAB使用Simulink 进行建模与仿真方法、步骤,希望能够帮助大家。 电脑 MATLAB及Simulink 组件 MATLAB使用Simulink 进行建模与仿真 1 我们打开MATLAB软件,然后在命令窗口中输入simulink或点击左上角的

    2024年02月05日
    浏览(104)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包