【AIGC】12、DINO | 针对 DETR-like 检测器的提升

这篇具有很好参考价值的文章主要介绍了【AIGC】12、DINO | 针对 DETR-like 检测器的提升。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【AIGC】12、DINO | 针对 DETR-like 检测器的提升,AIGC,AIGC,深度学习,人工智能

论文:DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

代码:https://github.com/IDEACVR/DINO

出处:香港大学 | 清华大学

时间:2022.07

【AIGC】12、DINO | 针对 DETR-like 检测器的提升,AIGC,AIGC,深度学习,人工智能

一、背景

DINO:Detr with Improved deNoising anchOr boxes

DINO 是一个基于 DETR 结构的端到端目标检测器,通过对去噪训练使用对比学习的方式来提高了 DETR-like models 的性能和效果

DINO 的结构:

  • backbone
  • multi-layer Transformer encoder
  • multi-layer Transformer decoder
  • multiple prediction heads
  • 参考 DAB-DETR,作者在 decoder 中构建了 queries 作为 dynamic anchor box,并且通过 decoder layers 一步步对其进行 refine
  • 参考 DN-DETR,作者在 Transformer decoder layer 中的 ground truth label 和 box 添加了噪声,帮助模型在训练中实现更稳定的双边匹配
  • 作者还使用了 deformable attention 来提高计算效率

DINO 提出的三个新方式:

  • contrastive denoising training:

    为了提升 one-to-one matching 的效果,将一个 gt 对应的所有正负样本都加起来来实现,给一个 gt box 添加两个不同的噪声后,将噪声较小的 box 标记为 positive,另外一个标记为 negative

    能够帮助模型过滤掉同一目标的多个冗余输出

  • mixed query selection:

    改善 query 初始化

  • look forward twice:

    为了使用后面的层的 refine box information 来帮助前面层进行优化

二、方法

【AIGC】12、DINO | 针对 DETR-like 检测器的提升,AIGC,AIGC,深度学习,人工智能

DINO: DETR with Improved DeNoising Anchor Boxes

DETR 是由两部分构成的:

  • positional part:作为 positional queries
  • content part:作为 content queries

DINO 的框架结构如图 2 所示:给定一个输入图像

  • 首先,使用 ResNet 或 Swin transformer 作为 backbone 来进行特征提取
  • 其次,将提取到的特征输入 Transformer encoder,并且加上 position embedding,进行 feature enhancement
  • 接着,使用 new mixed query selection 来初始化 anchor 作为 decoder 的 positional queries。对 content queries 不进行初始化,让其可以自己学习
  • 然后,使用 deformable attention [41] 来对 encoder 输出特征进行结合,并且逐层更新 queries
  • 最后,最终的输出是 refined anchor box 和 class result
  • 此外,类似于 DN-DETR,DINO 中也使用了 DN branch,来进行 denoising training,且在基础 DN 方法之外,还考虑的 hard negative samples

2.1 Contrastive DeNoising Training

DN-DETR 在稳定训练和加速收敛上表现很好,能够基于和 gt box 离得近的 anchor 来进行预测。

但是,DN-DETR 对附近没有 object 的 anchor 预测 “no object” 的能力较差

所以本文提出了 Contrastive DeNoising(CDN) 来剔除没用的 anchor

DN-DETR 中有一个超参 λ \lambda λ 来控制噪声尺度,生成的早上不会大于 λ \lambda λ,因为 DN-DETR 想要模型学习在适度的 noised queries 中重建 gt

DINO 中,提出了两个超参 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2,且 λ 1 < λ 2 \lambda_1 < \lambda_2 λ1<λ2,如图 3 所示,生成两种 CDN queries:

  • positive queries:noise scale 小于 λ 1 \lambda_1 λ1,用于重建 gt box
  • negative queries:noise scale 大于 λ 1 \lambda_1 λ1 小于 λ 2 \lambda_2 λ2,用于预测 “no object”

如图 3 所示,每个 CDN group 有一系列 positive queries 和 negative queries,如果一个图像有 n 个 GT box,CDN group 会有 2n 哥 queries,因为每个 GT box 生成一个 positive 和一个 negative queries

2.3 Mixed Query Selection

如图 5c,DINO 只使用 position information 和 selected top-K features 来初始化 anchor box,保持 content queries

【AIGC】12、DINO | 针对 DETR-like 检测器的提升,AIGC,AIGC,深度学习,人工智能

2.4 Look Forward Twice

【AIGC】12、DINO | 针对 DETR-like 检测器的提升,AIGC,AIGC,深度学习,人工智能

三、效果

【AIGC】12、DINO | 针对 DETR-like 检测器的提升,AIGC,AIGC,深度学习,人工智能文章来源地址https://www.toymoban.com/news/detail-535476.html

到了这里,关于【AIGC】12、DINO | 针对 DETR-like 检测器的提升的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【AIGC】15、Grounding DINO | 将 DINO 扩展到开集目标检测

    论文:Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection 代码:https://github.com/IDEA-Research/GroundingDINO 出处:清华、IDEA 时间:2023.03.20 贡献: 本文提出了一种 open-set 的目标检测器,Grounding DINO,将 Transformer based 检测器 DINO 和 grounded pre-training 结合起来,能够输出

    2024年02月09日
    浏览(54)
  • DINO:DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

    论文名称: DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection 发表时间:ICLR2023 作者及组织:Shilong Liu, Feng Li等,来自IDEA、港中文、清华。  该篇论文在DN-DETR基础上,额外引进3个trick进一步增强DETR的性能:在12epoch下coco上达到了49.0map。本文将分别介绍这3个trick,

    2024年01月18日
    浏览(37)
  • 【opencv】传统目标检测:Haar检测器实现人脸检测

    传统目标分类器主要包括Viola Jones Detector、HOG Detector、DPM Detector,本文主要介绍VJ检测器,在VJ检测器基础上发展出了Haar检测器,Haar检测器也是更为全面、使用更为广泛的检测器。 Viola Jones Detector是作为人脸检测器被Viola和Jones提出来的,后来Rainer Lienhart和Jochen Maydt将这个检测

    2024年02月12日
    浏览(40)
  • Verilog设计“111”检测器与“01110”检测器并测试所有情况

    使用Quartus+modelsim完成本次设计 分析 分析题目,得到其有限状态机为下图: 代码实现 Testbench 结果 Modelsim结果如下图所示,分析可知实现了题目要求。 逻辑综合出来的电路如下图所示:即只有S3状态才会输出OUT=1。 其中的state的状态机如下图所示(RLT viewer中所示),可见其与

    2024年02月08日
    浏览(57)
  • ML类CFAR检测器在不同环境中检测性能的分析

    摘要:该文是楼主翻阅书籍以及一些论文总结出来的关于ML(均值)类CFAR检测器在不同环境中的性能对比,以及优缺点的总结,可以帮助大家面对不同情形如何选择CFAR问题。由于楼主见识短浅,文中难免出现不足之处,望各位指出。          首先在均匀杂波背景中,采用平

    2024年02月13日
    浏览(37)
  • YOLOV:图像对象检测器在视频对象检测方面表现也很不错

    前言  与传统的两段pipeline不同,论文提出了在一段检测之后再进行区域级的选择,避免了处理大量低质量的候选区域。此外,还构建了一个新的模块来评估目标帧与参考帧之间的关系,并指导聚合。 作者进行了大量的实验来验证该方法的有效性,并揭示了其在有效性和效率

    2023年04月08日
    浏览(40)
  • 【youcans 的图像处理学习课】23. 人脸检测:Haar 级联检测器

    专栏地址:『youcans 的图像处理学习课』 文章目录:『youcans 的图像处理学习课 - 总目录』 基于 Haar 特征的级联分类器是 Paul Viola 在论文”Rapid Object Detection using a Boosted Cascade of Simple Features”中提出的一种目标检测方法。 Haar 级联分类器在每一级的节点中,使用 AdaBoost 算法学

    2024年02月07日
    浏览(52)
  • 1001序列检测器

    multisim仿真文件:1001序列检测器(mealy机)-单片机文档类资源-CSDN下载 modelsim仿真文件:1001序列检测器modelsim仿真和测试文件-单片机文档类资源-CSDN下载 实验报告:1001序列检测器实验报告-单片机文档类资源-CSDN下载 电 子 科 技 大 学 课程设计名称:           1001 序列检

    2024年02月06日
    浏览(47)
  • OpenCV分类检测器训练

    OpenCV中有两个程序可以训练级联分类器: opencv_haartraining 和opencv_traincascade。opencv_traincascade 是一个新程序,使用OpenCV 2.x API 以C++ 编写。这二者主要的区别是 opencv_traincascade 支持 Haar、Hog和 LBP(Local Binary Patterns) 三种特征,并易于增加其他的特征。与Haar特征相比,LBP特征是整数

    2024年02月17日
    浏览(46)
  • ChatGPT检测器(Detector)

    现阶段可使用的Detector如以下所示,在网页端有5个(3个支持中文),api有3个途径,代码运行成功的有一个。 名称 地址 特性 GPTZero https://gptzero.me/ 支持中英文,判定较为严格,有开源代码 OpenAI GPT2 Output Detector https://openai-openai-detector.hf.space/ 支持中英文,判定宽松 Hello-Simple

    2023年04月27日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包