数学建模常用模型(三):层次分析法

这篇具有很好参考价值的文章主要介绍了数学建模常用模型(三):层次分析法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

数学建模常用模型(三):层次分析法

层次分析法(Analytic Hierarchy Process,AHP)是一种用于多准则决策分析的方法,由美国运筹学家托马斯·L·赛蒂(Thomas L. Saaty)于1970年提出。它通过对决策问题进行层次化,将复杂的问题拆分为多个层次和准则,并使用定量化的方法进行比较和权重分配,最终得出综合评价和决策结果。
这是我自己总结的一些代码和资料(本文中的代码以及参考书籍等),放在github上供大家参考:https://github.com/HuaandQi/Mathematical-modeling.git

1.AHP方法的基本步骤

  1. 确定决策目标:明确决策的总体目标,并将其作为最高层次的准则。
  2. 层次分解:将决策问题分解为若干个层次和准则。通常包括目标层、准则层和方案层。
  3. 构建判断矩阵:对于每个层次的准则和方案,构建两两比较的判断矩阵。在判断矩阵中,使用1-9的尺度表示两个元素之间的相对重要性或优劣程度。
  4. 计算权重:根据判断矩阵,通过一致性检验和特征向量法计算每个准则和方案的权重。
  5. 一致性检验:对于每个判断矩阵,进行一致性检验,以确保判断矩阵的合理性和一致性。
  6. 综合评价:将权重与各个层次和准则的评估值相乘,得出方案的综合评价结果。
  7. 敏感性分析:对权重进行敏感性分析,评估不同权重对最终结果的影响程度。

2.程序实例

from pyanp import pairwise_from_array, ahp_array, anp_array

# 创建判断矩阵
judgment_matrix = [
    [1, 3, 5],
    [1/3, 1, 2],
    [1/5, 1/2, 1]
]

# 使用pairwise_from_array创建Pairwise类
pairwise = pairwise_from_array(judgment_matrix)

# 使用ahp_array进行AHP计算
weights = ahp_array(pairwise)

# 打印权重
for i, weight in enumerate(weights):
    print(f"Criterion {i+1}: {weight:.4f}")

这段代码使用了pyanp库的函数进行AHP分析。首先,我们创建了一个判断矩阵judgment_matrix。然后,使用pairwise_from_array函数将判断矩阵转换为Pairwise类的实例。接下来,使用ahp_array函数对Pairwise实例进行AHP计算,得到每个准则的权重。最后,我们打印出每个准则的权重。

3.总结

AHP方法在决策分析和评估中具有广泛的应用,特别是在复杂的多准则决策问题中。它可以帮助决策者将主观意见和定性判断转化为定量化的指标和权重,提供决策支持和理性的决策结果。同时,AHP方法也要求决策者对问题有全面的了解和判断,以准确构建判断矩阵和权重计算。文章来源地址https://www.toymoban.com/news/detail-535566.html

到了这里,关于数学建模常用模型(三):层次分析法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模——层次分析法(AHP)

    在人类社会生活的各个领域以及日常生活中,我们经常遇到一些决策问题,例如购物买钢笔,一般要依据质量、颜色、实用性、价格、外形等方面的因素选择某一支钢笔。买饭,则要依据色、香、味、价格等方面的因素选择某种饭菜。过去人们处理这些问题往往是凭经验,靠

    2024年02月05日
    浏览(51)
  • 五、数学建模之层次分析法

    1.概念 2.例题    层次分析法 (Analytic Hierarchy Process,AHP)是一种多 标准决策分析方法 ,用于帮助人们在面对复杂的决策问题时 进行定量和定性的比较和评估 。它最初由美国运筹学家和管理学家托马斯·萨蒙(Thomas L. Saaty)于20世纪70年代提出,并在后来得到广泛应用。层

    2024年02月07日
    浏览(55)
  • 【数学建模】层次分析法(AHP)

    评价类问题 ,如选择哪种方案最好,哪位运动员或者员工表现地更优秀。通常具体数据没有给出。 一道典型例题 这是典型的运用层次分析法的题目,没有给出具体数据,要求采取一定措施进行评价,选择最佳方案,其中已经高亮。 我们需要考虑三个问题: 目标、方

    2024年02月01日
    浏览(41)
  • 数学建模学习笔记||层次分析法

    解决评价类问题首先需要想到一下三个问题 我们评价的目标是什么 我们为了达到这个目标有哪几种可行方案 评价的准则或者说指标是什么 对于以上三个问题,我们可以根据题目中的背景材料,常识以及网上收集到的参考资料进行结合,从而筛选出最合适的指标 优先选择知

    2024年01月23日
    浏览(56)
  • 数学建模:层次分析法(AHP)

    层次分析法(Analytic Hierarchy Process,AHP)是一种多准则决策方法,用于解决复杂的决策问题。它是由美国数学家托马斯·萨亚基(Thomas L. Saaty)于20世纪70年代提出的。其基本思想是将复杂的决策问题分解为层次结构,通过对准则和方案进行定量和定性的比较,最终得出最佳决

    2024年01月17日
    浏览(58)
  • 数学建模常用模型(十) :数据包络(DEA)分析法

    数据包络分析(DEA)是一种用于评估决策单元(Decision Making Unit,DMU)效率的方法。在DEA中,每个DMU都是一个有多个输入和输出指标的单位,而DEA的目标是找到一个最优的权重组合,使得每个DMU在其输入和输出指标上都能达到最大值,即达到最高的效率。 这是我自己总结的一

    2024年02月05日
    浏览(45)
  • 清风老师数学建模笔记——层次分析法

    1.层次分析法的概念;层次分析法(The Analytic Hierarchy Process即 AHP)是由美国运筹学家、匹兹堡大学教授T . L. Saaty于20世纪70年代创立的一种系统分析与决策的综合评价方法,是在充分研究了人类思维过程的基础上提出来的,它较合理地解决了定性问题定量化的处理过程。 2.层次

    2024年02月02日
    浏览(47)
  • 数学建模(层次分析法 python代码 案例)

    目录 介绍:  模板: 例题:从景色、花费、饮食,男女比例四个方面去选取目的地  准则重要性矩阵:  每个准则的方案矩阵:​  一致性检验:  特征值法求权值: 完整代码: 运行结果:

    2024年04月29日
    浏览(42)
  • 清风数学建模学习笔记(一)层次分析法

    目录 一、基本介绍 二、利用层次分析法解决评价类问题 2.1判断矩阵 2.2判断矩阵一致性检验  2.3计算权重  2.4算数平均法求权重  2.5几何平均法求权重  2.6特征值求权重 三、总结  层次分析法是评价类模型中的一种常见算法,它是用来根据多种准则,或是说因素从候选方案

    2024年02月16日
    浏览(47)
  • 基于AHP层次分析法的数学建模研究

            随着数学在现代科学和技术中的广泛应用,数学建模在现代实践中的应用越来越广泛,成为现代科学和技术发展的重要手段。然而,在复杂的实际问题中,很难直接应用数学方法去解决问题。因此,选择适当的建模方法和技术来解决实际问题显得尤为重要。    

    2024年02月10日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包