玩转Numpy——np.ravel()的使用

这篇具有很好参考价值的文章主要介绍了玩转Numpy——np.ravel()的使用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

numpy中的ravel函数的作用是让多维数组变成一维数组

numpy.ravel()

下面演示一下二维和三维数组的ravel操作,多维数组的ravel操作与其类似

eg: 

import numpy as np
##对二维数组进行reval
a=np.empty((2,2),dtype=int)  #创建2*2数组
print("二维数组a:")
print(a)
b=a.ravel()     #对a进行拉伸操作
print("对a进行ravel操作后:")
print(b)

##对三维数组进行reval
c=np.empty((2,3,4),dtype=int)  #创建2*3*4数组 (两页三行四列)
print("三维数组c:")
print(c)
d=np.ravel(c)
print("对c进行reval操作后:")
print(d)



result:
二维数组a:
[[-321827512        473]
 [-360868848        473]]
对a进行ravel操作后:
[-321827512        473 -360868848        473]
三维数组c:
[[[-343423992        473         64          0]
  [         0          0          0          0]
  [         0    3932252  959787365  892810805]]

 [[1681273955  859385958 1680945763 1717778745]
  [ 912471352  942826085 1717645922  845558069]
  [1684222820  929314867  943285815 1664234593]]]
对c进行reval操作后:
[-343423992        473         64          0          0          0
          0          0          0    3932252  959787365  892810805
 1681273955  859385958 1680945763 1717778745  912471352  942826085
 1717645922  845558069 1684222820  929314867  943285815 1664234593]

ravel函数的功能是将原数组拉伸成为一维数组


建议收藏,以便下次查阅方便文章来源地址https://www.toymoban.com/news/detail-537362.html

到了这里,关于玩转Numpy——np.ravel()的使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python中Numpy的np.array详解

    np.array 用于创建一个新的NumPy数组对象。其语法如下: object :任何可用于初始化新数组的对象,例如列表、元组、数组等。 dtype :新数组的数据类型。如果未指定,则会从输入对象中推断数据类型。 其他参数允许进一步控制新数组的创建。 返回一个新的NumPy数组。 示例

    2024年02月08日
    浏览(47)
  • numpy np.savetxt()的使用

    前言 使用numpy将数据保存为txt文件,并且保留所需要的位数 X : 要保存的数据 fmt :  保留的有效数字位数 delimiter : 每列的填充字符 代码如下(示例):       输出为科学计数法: 如果要每列保存不同的格式怎么办?比如像下面这样  前三列要保留小数点后4位小数  后三列保

    2024年02月11日
    浏览(39)
  • Python,Numpy中随机抽样的函数 np.random.choice()详解

    np.random.choice() 是NumPy库中的一个函数,用于从给定的一维数组或可迭代对象中随机抽样。这个函数具有以下参数和功能: 参数 a :表示从中抽取随机样本的数组或整数。如果 a 是一个整数,则抽样将从 np.arange(a) 中进行。 size :输出样本的大小。默认情况下,返回单个值。你

    2024年02月06日
    浏览(46)
  • 【python】使用numpy创建同心矩阵

    输入一个正奇数N,创建一个N*N的矩阵满足: 1. 矩阵中心的元素为N,其外层被N-1包围; 2. N-1的外层被N-2包围; 3. 依次循环,直到形成一个N*N的矩阵。 很容易可以计算得出,矩阵元素从内到外递减,最外层的元素为(N+1)/2. 我们可以使用numpy从外向内地填充矩阵;首先生成一个

    2024年02月13日
    浏览(43)
  • Python 使用numpy.bincount计算混淆矩阵

    Confusion matrix using numpy.bincount. np.bincount 用于统计一个非负数组中元素的出现次数。函数格式如下: 通常默认数组 x x

    2024年02月07日
    浏览(39)
  • 线性代数-Python-01:向量的基本运算 - 手写Vector及numpy的基本用法

    https://github.com/Chufeng-Jiang/Python-Linear-Algebra-for-Beginner/tree/main 单位向量叫做 u hat Vector.py _globals.py main_vector.py main_numpy_vector.py

    2024年02月08日
    浏览(41)
  • [Python中矩阵上下左右翻转(np.flip)]

    [Python中矩阵上下左右翻转(np.flip)] 现代编程语言和相关库的发展,使得数值计算和数据处理变得更加便捷和高效。在Python中,NumPy库是众多数据科学和工程应用领域的重要支撑之一。其中,np.flip函数可以用于进行矩阵的上下左右翻转操作,是我们在处理图像、信号、物理模

    2024年02月12日
    浏览(47)
  • np.sin( )函数 (Numpy库)

    np.sin(a)函数:对a中元素取正弦值。a可以是ndarray数据也可以是单个数据。 当a是单个数据时,np.sin(a)返回一个数据。 当a是ndarray数据时,np.sin(a)返回一个ndarray。 在上文中的np.pi表示π,但是它不可能那么精确真的是π,因此sin(np.pi)计算机计算出来不是准确的零,而是无限接近于

    2024年02月16日
    浏览(39)
  • 解决numpy模块没有‘np.bool’

    numpy在1.20版本就弃用了np.bool,需要使用bool或者np.bool_替代。 (以下为个人小实验验证,上面就已经可以解决问题了) 以下是使用了1.20版本的numpy后出现的提示    将1.20版本的numpy从np.bool改为 bool 或者 np.bool_ 如下,就没有包warning 如果使用大于1.20版本的numpy然后使用np.bool 会报

    2024年02月16日
    浏览(34)
  • Numpy || np.array()函数用法指南

    numpy ndarray对象是一个n维数组对象,ndarray只能存储一系列相同元素。 numpy.array()使用说明:object是必须输入的参数,其余为可选参数。 创建存储元素类型不同的数组: 创建生成器: 当输入的object元素有不同类型时,将保留存储空间最大的类型: 当多维数组元素个数不一致时:

    2024年01月24日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包