3D 视觉 相关知识-SLAM框架-常见方案对比

这篇具有很好参考价值的文章主要介绍了3D 视觉 相关知识-SLAM框架-常见方案对比。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

点云数据

通过测量仪器获得 物体外观 的点数据的集合,叫点云。点云是在和目标表面特性的海量点集合。

点云是在和目标表面特性的海量点集合。
根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。
根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。
结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。
在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)。
点云的格式:; *.pts; *.asc ; *.dat; *.stl ;


一篇关于3D点云的论文

随着激光雷达,RGBD相机等3D传感器在机器人,无人驾驶领域的广泛应用。针对三维点云数据的研究也逐渐从低层次几何特征提取(PFH,FPFH,VFH等)向高层次语义理解过渡(点云识别,语义分割)。与图像感知领域深度学习几乎一统天下不同,针对无序点云数据的深度学习方法研究则进展缓慢。分析其背后的原因,不外乎三个方面:

    1. 点云具有无序性。受采集设备以及坐标系影响,同一个物体使用不同的设备或者位置扫描,三维点的排列顺序千差万别,这样的数据很难直接通过End2End的模型处理。

  • 2.点云具有稀疏性。在机器人和自动驾驶的场景中,激光雷达的采样点覆盖相文章来源地址https://www.toymoban.com/news/detail-538136.html

到了这里,关于3D 视觉 相关知识-SLAM框架-常见方案对比的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 《视觉SLAM十四讲》报错信息和解决方案

    ch4-Sophus 编译报错 报错信息: 解决方法:修改Sophus下的so2.cpp文件 将下面这个修改一下: 修改为: ch5/imageBasics 安装opencv4.x报错 环境:Unbuntu22.04,安装opencv4.x 报错信息: 解决方案:参照https://blog.csdn.net/qq_51022848/article/details/128095476 ch5/joinMap/CMakeLists.txt 编译报错 报错信息:

    2024年02月14日
    浏览(35)
  • 【视觉SLAM入门】5.2. 2D-3D PNP 3D-3D ICP BA非线性优化方法 数学方法SVD DLT

    前置事项: 该问题描述为:当我们知道n 个 3D 空间点以及它们的投影位置时,如何估计相机所在的位姿 1.1.1 DLT(直接线性变换法) 解决的问题:已知空间点 P = ( X , Y , Z , 1 ) T P = (X, Y, Z, 1)^T P = ( X , Y , Z , 1 ) T 和它投影点 x 1 = ( u 1 , v 1 , 1 ) T x_1 = (u_1, v_1, 1)^T x 1 ​ = ( u 1 ​ , v 1

    2024年02月12日
    浏览(42)
  • 手撕 视觉slam14讲 ch7 / pose_estimation_3d2d.cpp (1)

     1. 读图,两张rgb(cv::imread)  2. 找到两张rgb图中的特征点匹配对        2.1定义所需要的参数:keypoints1, keypoints2,matches        2.2 提取每张图像的检测 Oriented FAST 角点位置并匹配筛选(调用功能函数1)  3. 建立3d点(像素坐标到相机坐标)         3.1读出深度图(c

    2024年02月10日
    浏览(41)
  • (汇总篇)语义SLAM相关开源方案| 全球优秀作者与实验室 | SLAM学习资料整理

    以下内容收集也不完整,无法涵盖视觉 SLAM 的所有研究,也欢迎大家有好的方案欢迎留言或者私信。 1.1 Geometric SLAM (26项) 这一类是传统的基于特征点、直接法或半直接法的几何 SLAM。 1. PTAM 论文 :Klein G, Murray D. Parallel tracking and mapping for small AR workspaces [C]//Mixed and Augmented

    2024年02月03日
    浏览(56)
  • 3d激光SLAM:LIO-SAM框架---位姿融合输出

    LIO-SAM的全称是:Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping 从全称上可以看出,该算法是一个紧耦合的雷达惯导里程计(Tightly-coupled Lidar Inertial Odometry),借助的手段就是利用GT-SAM库中的方法。 LIO-SAM 提出了一个利用GT-SAM的紧耦合激光雷达惯导里程计的框架。 实现了

    2023年04月20日
    浏览(37)
  • BMVC 23丨多模态CLIP:用于3D场景问答任务的对比视觉语言预训练

    来源:投稿 作者:橡皮 编辑:学姐 论文链接:https://arxiv.org/abs/2306.02329 训练模型将常识性语言知识和视觉概念从 2D 图像应用到 3D 场景理解是研究人员最近才开始探索的一个有前景的方向。然而,2D 提炼知识是否可以为下游 3D 视觉语言任务(例如 3D 问答)提供有用的表示仍

    2024年02月04日
    浏览(46)
  • MinIO与MySQL对比以及存储的相关知识

    看了一些文章,也没有特别清晰的理解面向对象存储。我发现中文网站上并没有人去对比的写MinIO和MySQL的不同,可能大家觉得这俩根本没必要对比吧。这篇文章会对比MinIO与MySQL,能更直观的理解面向对象存储。(以下内能很多都是按自己的理解,可能有错误,如有错误,请

    2024年02月02日
    浏览(38)
  • [工业3D] 主流的3D光学视觉方案及原理

    📢博客主页:https://loewen.blog.csdn.net 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正! 📢本文由 丶布布 原创,首发于 CSDN, 转载注明出处 🙉 📢现在的付出,都会是一种沉淀,只为让你成为更好的人✨ 一. 前言 传统工业机器视觉中, 3D 视觉与 2D 视觉技术的最大区别在

    2024年02月16日
    浏览(34)
  • 3D视觉之深度相机方案

    随着机器视觉,自动驾驶等颠覆性的技术逐步发展,采用 3D 相机进行物体识别,行为识别,场景 建模的相关应用越来越多,可以说 3D 相机就是终端和机器人的眼睛。 3D 相机又称之为深度相机,顾名思义,就是通过该相机能检测出拍摄空间的景深距离,这也是与普 通摄像头

    2023年04月21日
    浏览(40)
  • 【计算机视觉 | 目标检测】常见的两种评价指标:AP50和APr的理解和对比

    平均精度(Average Precision,简称AP)是目标检测中广泛使用的一种评价指标,用于衡量模型的检测精度。AP的计算方式基于精度-召回曲线(precision-recall curve)。 精度-召回曲线是在不同的置信度阈值下,以不同的召回率(recall)计算出的对应的精度(precision)点组成的曲线。其

    2024年02月05日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包